Nuclear magnetic resonance (NMR) spectroscopy can be considered a kind of "magnetic tongue" for the characterisation and prediction of the tastes of foods, since it provides a wealth of information in a nondestructive and nontargeted manner. In the present study, the chemical substances in roasted coffee bean extracts that could distinguish and predict the different sensations of coffee taste were identified by the combination of NMR-based metabolomics and human sensory test and the application of the multivariate projection method of orthogonal projection to latent structures (OPLS). In addition, the tastes of commercial coffee beans were successfully predicted based on their NMR metabolite profiles using our OPLS model, suggesting that NMR-based metabolomics accompanied with multiple statistical models is convenient, fast and accurate for the sensory evaluation of coffee.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2013.11.161 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!