Cyanogenic glycosides are a large group of secondary metabolites that are widely distributed in the plant kingdom, including many plants that are commonly consumed by humans. The diverse chemical nature of cyanogenic glycosides means that extraction and analysis of individual compounds can be difficult. In addition, degradation can be rapid under appropriate conditions. Amygdalin is one of the cyanogenic glycosides found, for example, in apples, apricots and almonds. We have developed and applied a high performance liquid chromatographic procedure for amygdalin quantification to investigate extraction efficiency and to determine levels in a range of commercially-available foods for the first time. Our results show that seed from Rosaceae species contained relatively high amounts (range 0.1-17.5 mg g(-1)) of amygdalin compared to seed from non-Rosaceae species (range 0.01-0.2 mg g(-1)). The amygdalin content of processed food products was very low.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2013.11.002 | DOI Listing |
Int J Biol Macromol
January 2025
School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
Accurate, specific, and cost-effective detection of toxic cyanogenic glycosides is crucial for ensuring biological health and food safety. In this study, a novel biosensor based on co-immobilized multi-enzyme system was constructed by artificial antibody-antigen-directed immobilization for the colorimetric detection of amygdalin through a cascade reaction catalyzed by β-glucosidase, glucose oxidase, and horseradish peroxidase. Artificial antibodies and antigens were prepared using catechol and 3,4-dihydroxybenzaldehyde, respectively, to generate mutual affinity recognition ability for enzyme immobilization.
View Article and Find Full Text PDFTree Physiol
January 2025
Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
Tree bark is a crucial tissue that defends tree stems from invasions by microorganisms. However, our understanding of the constitutive chemical defense mechanisms of the tree barks remains limited. Our group recently discovered that the inner bark of Sorbus commixta exhibited potent inhibitory effects on the growth of the white-rot fungus, Trametes versicolor.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana 500078, India.
Cyanogenic glycosides are plant-derived, nitrogen-containing secondary metabolites that release toxic cyanide ions upon hydrolysis by glycosidic enzymes. Therefore, consuming food items enriched with such compounds without proper remediation can cause acute cyanide intoxication. Thus, in this work, we utilize cyanide-responsive oxidized bisindole-based chromogenic probes to detect cyanogenic glycosides, such as amygdalin and linamarin (LOD: 0.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Sanya 572000, China. Electronic address:
Cyanogenic plants can release toxic hydrogen cyanide (HCN) to defend against herbivory by hydrolyzing the cyanogenic glycosides (CNGs) with its β-glucosidases (β-GLUs). Numerous studies have speculated this CNG-mediated toxicity by a plant-pest interaction manner. However, the specific toxic effect of HCN was not well-demonstrated because of the interference of other ingested metabolites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!