Core-shell PMMA-Au nanocube structures made by a combination of nanoimprint lithography and sidewall deposition were used as template for electrodeposition of MoS2, Ni, and Pt. Linear sweep voltammetry experiments obtained in an aqueous solution containing 0.29 M H2SO4 (pH 0.24) showed that the onset potential of the core-shell-shell PMMA-Au-MoS2 nanocube electrode for the hydrogen evolution reaction (HER) was shifted to the positive direction (i.e., requiring a lower overpotential) by 20-40 mV compared to planar MoS2 films. This indicates that the nanocube electrodes have a significantly increased HER activity, which is probably because of a higher density of catalytically active edge sites available at the nanocube surface. It was also found that the HER activity initially increased with increasing MoS2 deposition time, but decreased after deposition for 60 min because the edges of the nanocubes became rounded, thereby decreasing the number of active edge sites. By depositing Ni and Pt on top of PMMA-Au nanocubes, it was shown that this method can also be used for the synthesis of nanocube structures with varying compositions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am405075f | DOI Listing |
ACS Nano
December 2024
Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy.
We report the synthesis of ethylammonium lead iodide (EAPbI) colloidal nanocrystals as another member of the lead halide perovskites family. The insertion of an unusually large -cation (274 pm in diameter) in the perovskite structure, hitherto considered unlikely due to the unfavorable Goldschmidt tolerance factor, results in a significantly larger lattice parameter compared to the Cs-, methylammonium- and formamidinium-based lead halide perovskite homologues. As a consequence, EAPbI nanocrystals are highly unstable, evolving to a nonperovskite δ-EAPbI polymorph within 1 day.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
The Affiliated Guangdong Second Provincial General Hospital of Jinan University, PR China. Electronic address:
Alpha-fetoprotein (AFP), serves as a reliable and vital biomarker for precise diagnosis and effective monitoring of hepatocellular carcinoma, requires precise detection. Herein, a sandwich-structured electrochemical immunosensor was crafted, employing three-dimensional layered porous carbon modified with gold nanoparticles (Au NPs) as the substrate and Au NPs/CuS as the labeling compound for accurate and sensitive detection of AFP. Due to the effective coordination between the 3D carbon network, Au NPs, and hollow CuS nanocubes, the sandwich-structured electrochemical immunosensor was able to produce three distinct response signals via various detection techniques, demonstrating a broad linear range (0.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
Chiral plasmonic nanomaterials have attracted significant awareness due to their applications in chiral catalysis, biosensing, photonics, and separation. Constructing plasmonic core-shell nanomaterials with geometric chirality and desirable optical chirality is a crucial yet challenging task for extending the range of chiral plasmonic nanomaterials. Here, a two-step method is reported for the synthesis of Gold (Au) branches wrapped silver (Ag) nanocubes (L/DBAg@Au) with strong and tunable circular dichroism (CD) signals under the regulation of L/D-cysteine (L/D-Cys).
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.
Rh-hydride phases were believed to be key causes of the exceptional catalytic ability of Rh catalysts under H reductive conditions. Here, we utilize the large-scale machine-learning-based global optimization to explore millions of Rh bulk, surface, and nanoparticle structures in contact with H, which rules out the presence of subsurface/interstitial H in Rh and Rh-hydride phases as thermodynamically stable phases under ambient conditions. Instead, an exceptional Rh-H affinity is identified for surface Rh atoms in Rh nanoparticles that can accommodate a high concentration of adsorbed H, with the surface Rh to H ratio reaching ∼2.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China. Electronic address:
Tellurides are promising anode materials for lithium-ion batteries (LIBs) because of their high electronic conductivity and energy density. However, the slow kinetics and poor structural stability lead to decreased electrochemical performance. In this work, by utilizing the interface magnetization mechanism and assembly effect, high-performance CoTe nanoparticles encapsulated hierarchical N-doped porous carbon nanofibers were rationally designed and prepared (ES-CoTe@NC) via facile tellurization of one-dimensional (1D) ZIF-67 nanocube assemblies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!