Liposomes have been used to diagnose and treat cancer and, to a lesser extent, cardiovascular disease. We previously showed the uptake of anionic liposomes into the atheromas of Watanabe heritable hyperlipidemic rabbits within lipid pools. However, the cellular distribution of anionic liposomes in atherosclerotic plaque remains undescribed. In addition, how anionic liposomes are absorbed into atherosclerotic plaque is unclear. We investigated the uptake and distribution of anionic liposomes in atherosclerotic plaque in aortic tissues from apolipoprotein E-deficient (ApoE(-/-)) mice. To facilitate the tracking of liposomes, we used liposomes containing fluorescently labeled non-silencing small interfering RNA. Confocal microscopy analysis showed the uptake of anionic liposomes into atherosclerotic plaque and colocalization with macrophages. Transmission electron microscopy analysis revealed anionic liposomal accumulation in macrophages. To investigate how anionic liposomes cross the local endothelial barrier, we examined the role of clathrin-mediated endocytosis in human coronary artery endothelial cells (HCAECs) treated with or without the inflammatory cytokine tumor necrosis factor (TNF)-α. Pretreatment with amantadine, an inhibitor of clathrin-mediated endocytosis, significantly decreased liposomal uptake in HCAECs treated with or without TNF-α by 77% and 46%, respectively. Immunoblot analysis showed that endogenous clathrin expression was significantly increased in HCAECs stimulated with TNF-α but was inhibited by amantadine. These studies indicated that clathrin-mediated endocytosis is partly responsible for the uptake of liposomes by endothelial cells. Our results suggest that anionic liposomes target macrophage-rich areas of vulnerable plaque in ApoE(-)(/)(-) mice; this finding may lead to the development of novel diagnostic and therapeutic strategies for treating vulnerable plaque in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431645PMC
http://dx.doi.org/10.3109/08982104.2013.863208DOI Listing

Publication Analysis

Top Keywords

anionic liposomes
28
atherosclerotic plaque
20
liposomes atherosclerotic
16
liposomes
12
clathrin-mediated endocytosis
12
apolipoprotein e-deficient
8
anionic
8
uptake anionic
8
distribution anionic
8
apoe-/- mice
8

Similar Publications

Solid magnetic liposomes (ML, nanocomposites comprising lipid bilayers that incorporate magnetic nanoparticles) may be used in wastewater remediation: the lipid bilayer creates an environment where organic pollutants preferentially partition instead of water and the manipulation of ML with an external magnet enables an easy recovery from water. This study aimed to assess the system's potential for water remediation, focusing on ML ability to remove common pollutants in industrial wastewater. Specifically, alkylphenol ethoxylates (APEO) were used as the archetype for organic pollutants.

View Article and Find Full Text PDF

Anionic polysaccharides as delivery carriers for cancer therapy and theranostics: An overview of significance.

Int J Biol Macromol

December 2024

Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan. Electronic address:

Recently, cancer therapy has witnessed remarkable advancements with a growing focus on precision medicine and targeted drug delivery strategies. The application of anionic polysaccharides has gained traction in various drug delivery systems. Anionic polysaccharides have emerged as promising delivery carriers in cancer therapy and theranostics, offering numerous advantages such as biocompatibility, low toxicity, and the ability to encapsulate and deliver therapeutic agents to tumor sites with high specificity.

View Article and Find Full Text PDF

Bacterial removal using liposomes and an anionic adsorber.

J Biosci Bioeng

December 2024

Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

Extracorporeal blood purification techniques using magnetic beads, which physically remove bacteria, fungi, viruses, and cytokines (disease agents) from the blood causing sepsis, have been studied. However, magnetic bead influx, which causes hemolysis and cytotoxicity, is an important issue. This study proposed a novel method for removing Escherichia coli from the blood using liposomes with high biocompatibility.

View Article and Find Full Text PDF

This study focused on the development of cholesterol-free fusogenic liposomes with different surface charge with the aim of improving biofilm penetration. In vitro assessments of the liposomes included physical stability, biocompatibility, fusion with microbial cells, and the ability to penetrate established biofilms. Using dynamic light scattering, cholesterol-free, fusogenic liposomes were found to be < 200 nm in size with small size distribution (PDI < 0.

View Article and Find Full Text PDF

In recent years, polypeptides have been standing out as excellent candidates to replace polyethylene glycol (PEG) with adequate biocompatibility and biodegradability. In this study, we found that (VELPPP), an anionic γ-zein-based proline-rich peptide with a polyproline-II helical structure, was able to impart liposomes with considerable stability and significantly prolonged blood circulation in vivo. Furthermore, we have shown that (VELPPP)-modified liposomes induced negligible anti-peptide IgM production, and no noticeable accelerated blood clearance after repeated or multi-dose administration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!