Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Magnetic resonance (MR) imaging (MRI) is widely used to study the structure of human brains. Unlike computed tomography (CT), MR image intensities do not have a tissue specific interpretation. Thus images of the same subject obtained with either the same imaging sequence on different scanners or with differing parameters have widely varying intensity scales. This inconsistency introduces errors in segmentation, and other image processing tasks, thus necessitating image intensity standardization. Compared to previous intensity normalization methods using histogram transformations-which try to find a global one-to-one intensity mapping based on histograms-we propose a patch based generative model for intensity normalization between images acquired under different scanners or different pulse sequence parameters. Our method outperforms histogram based methods when normalizing phantoms simulated with various parameters. Additionally, experiments on real data, acquired under a variety of scanners and acquisition parameters, have more consistent segmentations after our normalization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3892712 | PMC |
http://dx.doi.org/10.1109/ISBI.2013.6556482 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!