A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PATCH BASED INTENSITY NORMALIZATION OF BRAIN MR IMAGES. | LitMetric

PATCH BASED INTENSITY NORMALIZATION OF BRAIN MR IMAGES.

Proc IEEE Int Symp Biomed Imaging

Image Analysis and Communications Laboratory, Electrical and Computer Engineering, The Johns Hopkins University.

Published: December 2013

Magnetic resonance (MR) imaging (MRI) is widely used to study the structure of human brains. Unlike computed tomography (CT), MR image intensities do not have a tissue specific interpretation. Thus images of the same subject obtained with either the same imaging sequence on different scanners or with differing parameters have widely varying intensity scales. This inconsistency introduces errors in segmentation, and other image processing tasks, thus necessitating image intensity standardization. Compared to previous intensity normalization methods using histogram transformations-which try to find a global one-to-one intensity mapping based on histograms-we propose a patch based generative model for intensity normalization between images acquired under different scanners or different pulse sequence parameters. Our method outperforms histogram based methods when normalizing phantoms simulated with various parameters. Additionally, experiments on real data, acquired under a variety of scanners and acquisition parameters, have more consistent segmentations after our normalization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3892712PMC
http://dx.doi.org/10.1109/ISBI.2013.6556482DOI Listing

Publication Analysis

Top Keywords

intensity normalization
12
patch based
8
intensity
6
based intensity
4
normalization
4
normalization brain
4
brain images
4
images magnetic
4
magnetic resonance
4
resonance imaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!