Monitors evaluating the electroencephalogram (EEG) to determine depth of anaesthesia use spectral analysis approaches for analysis windows up to 61.5 s as well as additional smoothing algorithms. Stationary EEG is required to reliably apply the index algorithms. Because of rapid physiological changes, artefacts, etc., the EEG may not always fulfil this requirement. EEG analysis using permutation entropy (PeEn) may overcome this issue, since PeEn can also be applied to practically nonstationary EEG. One objective was to determine the duration of EEG sequences that can be considered stationary at different anaesthetic levels. The second, more important objective was to test the reliability of PeEn to reflect the anaesthetic levels for short EEG segments. EEG was recorded from 15 volunteers undergoing sevoflurane and propofol anaesthesia at different anaesthetic levels and for each group 10 data sets were included. EEG stationarity was evaluated for EEG sample lengths from 4 to 116 s for each level. PeEn was calculated for these sequences using different parameter settings and analysis windows from 2 to 60 s. During wakefulness EEG can only be considered stationary for sequences up to 12 s. With increasing anaesthetic level the probability and duration of stationary EEG increases. PeEn is able to reliably separate consciousness from unconsciousness for EEG segments as short as 2 s. Especially during wakefulness a conflict between stationary EEG sequence durations and methods used for monitoring may exist. PeEn does not require stationarity and functions for EEG sequences as short as 2 s. These promising results seem to support the application of non-linear parameters, such as PeEn, to depth of anaesthesia monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10877-014-9553-y | DOI Listing |
J Child Psychol Psychiatry
January 2025
Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA.
Background: Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental outcome among children with a history of early institutional care. Prior research on institutionalized children suggested that accelerated physical growth in childhood is a risk factor for ADHD outcomes.
Methods: The current study examined physical and neurophysiological growth trajectories among institutionalized children randomized to foster care treatment (n = 59) or care as usual (n = 54), and never institutionalized children (n = 64) enrolled in the Bucharest Early Intervention Project (NCT00747396, clinicaltrials.
Epilepsia
January 2025
Department of Neurology, University of California, San Francisco, San Francisco, California, USA.
Objective: Interhospital transfers for status epilepticus (SE) are common, and some are avoidable and likely lower yield. The use of interhospital transfer may differ in emergency department (ED) and inpatient settings, which contend with differing clinical resources and financial incentives. However, transfer from these two settings is understudied, leaving gaps in our ability to improve the hospital experience, cost, and triage for this neurologic emergency.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, China.
Electroencephalogram (EEG) signals are important bioelectrical signals widely used in brain activity studies, cognitive mechanism research, and the diagnosis and treatment of neurological disorders. However, EEG signals are often influenced by various physiological artifacts, which can significantly affect data analysis and diagnosis. Recently, deep learning-based EEG denoising methods have exhibited unique advantages over traditional methods.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Information and Electronic Engineering, International Hellenic University, 57001 Nea Moudania, Greece.
Education is an activity that involves great cognitive load for learning, understanding, concentrating, and other high-level cognitive tasks. The use of the electroencephalogram (EEG) and other brain imaging techniques in education has opened the scientific field of neuroeducation. Insights about the brain mechanisms involved in learning and assistance in the evaluation and optimization of education methodologies according to student brain responses is the main target of this field.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Instituto de Automática e Informática Industrial, Universitat Politècnica de València, 46022 Valencia, Spain.
In this paper, a bibliometric review is conducted on brain-computer interfaces (BCI) in non-invasive paradigms like motor imagery (MI) and steady-state visually evoked potentials (SSVEP) for applications in rehabilitation and robotics. An exploratory and descriptive approach is used in the analysis. Computational tools such as the biblioshiny application for R-Bibliometrix and VOSViewer are employed to generate data on years, sources, authors, affiliation, country, documents, co-author, co-citation, and co-occurrence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!