Oxymatrine attenuates diabetes-associated cognitive deficits in rats.

Acta Pharmacol Sin

Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.

Published: March 2014

Aim: Oxymatrine (OMT) is the major quinolizidine alkaloid extracted from the root of Sophora flavescens Ait (the Chinese herb Kushen) and exhibits diverse pharmacological actions. In this work we investigated the effects of OMT on diabetes-associated cognitive decline (DACD) in a rat model of diabetes and explored the mechanisms of action.

Methods: Male Wistar rats were injected with streptozotocin (65 mg/kg, ip) once to induce diabetes. The rats were then treated with vehicle or OMT (60 or 120 mg/kg per day, ip) for 7 weeks. Memory function was assessed using Morris water maze test. The levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), NF-κB p65 unit, TNF-α, IL-1β and caspase-3 in the cerebral cortex and hippocampus were quantified.

Results: The diabetic rats exhibited markedly reduced body weight and increased plasma glucose level. The memory function of the rats assessed using Morris water maze test showed significant reduction in the percentage of time spent in the target quadrant and the number of times crossing the platform, coupled with markedly prolongation of escape latency and mean path length. Moreover, the rats showed oxidative stress (significantly increased MDA, decreased SOD and reduced GSH levels), as well as significant increases of NF-κB p65 unit, TNF-α, IL-1β and caspase-3 levels in the cerebral cortex and hippocampus. Chronic treatment with OMT dose-dependently reversed these behavioral, biochemical and molecular changes in the diabetic rats. However, the swimming speed had no significant difference among the control, diabetic and OMT-treated diabetic rats.

Conclusion: Chronic treatment with OMT alleviates diabetes-associated cognitive decline in rats, which is associated with oxidative stress, inflammation and apoptotic cascades.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4647892PMC
http://dx.doi.org/10.1038/aps.2013.158DOI Listing

Publication Analysis

Top Keywords

diabetes-associated cognitive
12
rats
8
cognitive decline
8
memory function
8
assessed morris
8
morris water
8
water maze
8
maze test
8
nf-κb p65
8
p65 unit
8

Similar Publications

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) plaques and the aggregation of tau protein, resulting in intense memory loss and dementia. Diabetes-associated cognitive dysfunction (DACD) is a complication of diabetes mellitus, which is associated with decreased cognitive function and impaired memory. A growing body of literature emphasize the involvement of microglia in AD and DACD.

View Article and Find Full Text PDF

Objectives: To explore the effect and the probable mechanisms of JLD in the treatment of type 2 diabetes mellitus (T2DM) - associated cognitive impairment (TDACI).

Methods: The effect of JLD in combating TDACI was assessed in T2DM model mice by conducting Morris water maze (MWM) behaviour testing. Active components and their putative targets, as well as TDACI-related targets, were collected from public databases.

View Article and Find Full Text PDF

At present, there lacks a definitive pharmaceutical intervention or therapeutic approach for diabetes-associated cognitive impairment. Herein, we delved into the impact of electroacupuncture on cognitive function in high-fat diet/streptozocin (HFD/STZ)-induced T2DM mice and underlying mechanisms. Hippocampal insulin resistance was determined by western blot analysis.

View Article and Find Full Text PDF

Prolactin deficiency drives diabetes-associated cognitive dysfunction by inducing microglia-mediated synaptic loss.

J Neuroinflammation

November 2024

Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.

Background: Diabetes-associated cognitive dysfunction, characterized by hippocampal synaptic loss as an early pathological feature, seriously threatens patients' quality of life. Synapses are dynamic structures, and hormones play important roles in modulating the formation and elimination of synapses. The pituitary, the master gland of the body, releases several hormones with multiple roles in hippocampal synaptic regulation.

View Article and Find Full Text PDF

Taohe Chengqi decoction improves diabetic cognitive dysfunction by alleviating neural stem cell senescence through HIF1α-driven metabolic signaling.

Phytomedicine

December 2024

Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China. Electronic address:

Objective: Type 2 diabetes mellitus (T2DM) is characterized by numerous long-term complications, in which progressive cognitive decline represents a significant risk factor for dementia and other neurodegenerative disorders. Taohe Chengqi decoction (THCQ) is a common traditional Chinese formula for treating T2DM; however, the neuroprotective effect of THCQ on diabetes-associated cognitive dysfunction remains unclear. Hence, the present study investigated the therapeutic effects of THCQ on cognitive impairment associated with T2DM and elucidated the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!