Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Non-spherical particles may offer advantages over conventional spherical systems for drug delivery applications. This work describes the fabrication of agent-loaded poly(lactic-co-glycolic acid) (PLGA) spheroids via the emulsion solvent evaporation (ESE) method. The versatility of this technique for loading a variety of therapeutics is demonstrated via loading of paclitaxel, bovine serum albumin, and cadmium sulfide nanoparticles into PLGA spheroids. The encapsulation efficiency for spheroids fabricated via oil-in-water (O/W) emulsions is highest at low aqueous phase surfactant concentrations while the encapsulation efficiency for spheroids made via water-in-oil-in-water (W/O/W) is highest at high aqueous phase surfactant concentrations and basic aqueous phase pH values. Particle aspect ratio polydispersity can be minimized via the use of high aqueous phase PVA concentration and pH. The ESE technique is an attractive alternative to recently described methods for fabrication of non-spherical particles due to its simplicity in setup, high particle yield and adaptability to a variety of biodegradable polymers and therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2013.12.054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!