The hospital environment harbors bacteria that may cause health care-associated infections. Microorganisms, such as multiresistant bacteria, can spread around the patient's inanimate environment. Some recently introduced biodecontamination approaches in hospitals have significant limitations due to the toxic nature of the gases and the length of time required for aeration. This study evaluated the in vitro use of cold air plasma as an efficient alternative to traditional methods of biodecontamination of hospital surfaces. Cultures of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli, and Acinetobacter baumannii were applied to different materials similar to those found in the hospital environment. Artificially contaminated sections of marmoleum, mattress, polypropylene, powder-coated mild steel, and stainless steel were then exposed to a cold air pressure plasma single jet for 30 s, 60 s, and 90 s, operating at approximately 25 W and 12 liters/min flow rate. Direct plasma exposure successfully reduced the bacterial load by log 3 for MRSA, log 2.7 for VRE, log 2 for ESBL-producing E. coli, and log 1.7 for A. baumannii. The present report confirms the efficient antibacterial activity of a cold air plasma single-jet plume on nosocomial bacterially contaminated surfaces over a short period of time and highlights its potential for routine biodecontamination in the clinical environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3957639 | PMC |
http://dx.doi.org/10.1128/AEM.03480-13 | DOI Listing |
Heliyon
January 2025
Department of Support and Information Technology, D. Serikbayev East Kazakhstan Technical University, Ust-Kamenogorsk, 070001, Kazakhstan.
The article examines the territory of East Kazakhstan, where a sharply continental climate prevails with hot summers, cold and snowy winters. The mountainous regions of East Kazakhstan are represented by the Kalba, Altai and Saur-Tarbagatay ranges, they are surrounded by rolling plains. The highest points are at 3000-4500 m.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China.
Passive radiative cooling has recently gained significant attention as a highly promising technology that offers a zero-energy and electricity-free solution to tackle the pressing issue of global warming. Nevertheless, research efforts have predominantly focused on enhancing daytime and hot-day radiative cooling efficacy, often neglecting the potential downsides associated with excessive cooling and the consequent increased heating expenses during cold nights and winter days. Herein, we demonstrate a micro-nanostructured engineered composite film that synergistically integrates room-temperature adaptive silica-shell/oil-core phase change microcapsules (S-PCMs) with commercially available cellulose fibers.
View Article and Find Full Text PDFFlow Turbul Combust
November 2024
Institut de Mécanique des Fluides de Toulouse, IMFT, CNRS, Université de Toulouse, Toulouse, France.
Improving mixing between two coaxial swirled jets is a subject of interest for the development of next generations of fuel injectors. This is particularly crucial for hydrogen injectors, where the separate introduction of fuel and oxidizer is preferred to mitigate the risk of flashback. Raman scattering is used to measure the mean compositions and to examine how mixing between fuel and air streams evolves along the axial direction in the near-field of the injector outlet.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 43200, China.
Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.
View Article and Find Full Text PDFWaste Manag
January 2025
Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, PR China. Electronic address:
Household waste is a hotspot of antibiotic resistance, which can be readily emitted to the ambient airborne inhalable particulate matters (PM) during the day-long storage in communities. Nevertheless, whether these waste-specific inhalable antibiotic resistance genes (ARGs) are associated with pathogenic bacteria or pose hazards to local residents have yet to be explored. By high-throughput metagenomic sequencing and culture-based antibiotic resistance validation, we analyzed 108 airborne PM and nearby environmental samples collected across different types of residential communities in Shanghai, the most populous city in China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!