Melatonin is involved in the control of circadian and seasonal rhythmicity, possesses potent antioxidant activity, and exerts a neuroprotective and anticonvulsant effect. Spontaneously hypertensive rats (SHRs) are widely accepted as an experimental model of essential hypertension with hyperactivity, deficient sustained attention, and alterations in circadian autonomic profiles. The purpose of the present study was to determine whether melatonin treatment during epileptogenesis can prevent the deleterious consequences of status epilepticus (SE) in SHRs in the kainate (KA) model of temporal lobe of epilepsy (TLE). Spontaneous recurrent seizures (SRSs) were EEG- and video-recorded during and after the treatment protocol. Melatonin (10mg/kg diluted in drinking water, 8weeks) increased the seizure-latent period, decreased the frequency of SRSs, and attenuated the circadian rhythm of seizure activity in SHRs. However, melatonin was unable to affect the disturbed diurnal rhythms and behavioral changes associated with epilepsy, including the decreased anxiety level, depression, and impaired spatial memory. Melatonin reduced neuronal damage specifically in the CA1 area of the hippocampus and piriform cortex and decreased hippocampal serotonin (5-HT) levels both in control and epileptic SHRs. Although long-term melatonin treatment after SE shows a potential to attenuate seizure activity and neuronal loss, it is unable to restore epilepsy-associated behavioral abnormalities in SHRs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yebeh.2013.12.013DOI Listing

Publication Analysis

Top Keywords

seizure activity
12
status epilepticus
8
activity neuronal
8
neuronal damage
8
diurnal rhythms
8
rhythms behavioral
8
spontaneously hypertensive
8
hypertensive rats
8
kainate model
8
model temporal
8

Similar Publications

Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.

View Article and Find Full Text PDF

Background And Objectives: Understanding and managing seizure activity is crucial in neuro-oncology, especially for highly epileptogenic lesions like isocitrate dehydrogenase (IDH)-mutant gliomas. Advanced MRI techniques such as diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) have been used to describe microstructural changes associated with epilepsy. However, their role in tumor-related epilepsy (TRE) remains unclear.

View Article and Find Full Text PDF

Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1).

View Article and Find Full Text PDF

Anti-NMDA (N-methyl-D-aspartate) receptor encephalitis (ANRE) is a rare autoimmune condition targeting brain receptors, often linked to ovarian tumors in young women. In severe cases, it can lead to status epilepticus, but in sporadic cases, it may progress to super-refractory status epilepticus (SRSE), a dangerous state of continuous or repetitive seizures demanding urgent medical attention that continues or recurs more than 24 hours after the initiation of anesthetic therapy. We present a case report of anti-NMDA receptor limbic encephalitis-triggered SRSE terminated with vagus nerve stimulation (VNS) and titrated to high stimulation parameters in the immediate postoperative period.

View Article and Find Full Text PDF

The hippocampus forms memories of our experiences by registering processed sensory information in coactive populations of excitatory principal cells or ensembles. Fast-spiking parvalbumin-expressing inhibitory neurons (PV INs) in the dentate gyrus (DG)-CA3/CA2 circuit contribute to memory encoding by exerting precise temporal control of excitatory principal cell activity through mossy fiber-dependent feed-forward inhibition. PV INs respond to input-specific information by coordinating changes in their intrinsic excitability, input-output synaptic-connectivity, synaptic-physiology and synaptic-plasticity, referred to here as experience-dependent PV IN plasticity, to influence hippocampal functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!