Biodegradation of 3,4 dichloroaniline by fungal isolated from the preconditioning phase of winery wastes subjected to vermicomposting.

J Hazard Mater

Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), C/Profesor Albareda 1, 18008 Granada, Spain.

Published: February 2014

A hazardous contaminant, 3,4-dichloroaniline (DCA) is widespread in the environment due to its extensive use in the manufacture of chemicals and its application in different sectors. The ability of fungi grow on in winery wastes in the preconditioning period of vermicomposting to degrade DCA was investigated. Three filamentous fungi (F1, F2, and F3) were isolated and one identified as Aspergillus niger and two as Fusarium sp. strains. The culture media with the fungus alone or in consortium (Fmix) with DCA as the nitrogen source were analyzed by solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC/MS). The fastest degradation rate was measured in Fmix with a DT50 of 0.85day(-1). Fusarium sp. and A. niger differed in the metabolism of DCA. Five metabolites were identified as a result of oxidation, co-denitrification, N-acetylation, and polymerization reactions. The major metabolites were 3,4-dichloroacetanilide and dichloroquinolines. The azo-metabolites tetrachloroazobenzene and tetracloroazoxybenzene and 3,4-dichloronitrobenzene were found in minor amounts but appeared to be the most persistent in the Fusarium cultures (half-lives ranging from 8.3 to 30.9 days). This study highlights the metabolic potential of microorganisms in the preconditioning period of the vermicomposting process and its possible application for in situ bioremediation strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2013.12.052DOI Listing

Publication Analysis

Top Keywords

winery wastes
8
preconditioning period
8
period vermicomposting
8
biodegradation dichloroaniline
4
dichloroaniline fungal
4
fungal isolated
4
isolated preconditioning
4
preconditioning phase
4
phase winery
4
wastes subjected
4

Similar Publications

Highly selective acetate production from wine lees through acidogenic fermentation.

J Environ Manage

December 2024

INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France.

Article Synopsis
  • Wine lees, a waste product from winemaking, have untapped potential for producing valuable compounds like carboxylic acids, particularly acetate, due to their high ethanol and low carbohydrate levels.
  • In a study, both white and red wine lees were tested for anaerobic acetate production under specific conditions, revealing that white wine lees had similar fermentation success with endogenous microbes as with added inoculum, while red wine lees performed poorly without external help.
  • The research showed that acetate consistently made up a large portion of the end products (58-72%), and when red wine lees were co-fermented with activated sludge, additional fatty acids like caproate and heptanoate were produced, indicating strong potential for integrating this process into bi
View Article and Find Full Text PDF

Exploring the Biological Value of Red Grape Skin: Its Incorporation and Impact on Yogurt Quality.

Foods

October 2024

Department of Food and Nutrition, Oenology and Chemistry, Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova.

The study was conducted to study the sustainability and enhanced nutrition gains obtained from incorporating grape skin powder (GSP) extracted from both Fetească Neagră and Rară Neagră grape varieties into yogurt. Grape skins are major leftovers from wineries, having high amounts of phenolic compounds and dietary fiber responsible for their ability to improve the characteristics of food. The research aimed to evaluate the effect of GSP addition at varying concentrations (0.

View Article and Find Full Text PDF

Methylene blue (MB) is a dye hazardous pollutant widely used in several industrial processes that represents a relevant source of water pollution. Thus, the research of new systems to avoid their environmental dispersion represents an important goal. In this work, an efficient and sustainable nanocomposite material based on green gold nanoparticles for MB water remediation was developed.

View Article and Find Full Text PDF

The use of water in wineries: A review.

Sci Total Environ

November 2024

Engineering Department, ECT - School of Science and Technology, University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real 5000-801, Portugal; CQ-VR, University of Trás-os-Montes and Alto Douro University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal.

Water is essential at various stages of winemaking, from irrigation in the vineyard to cleaning equipment and facilities, controlling fermentation temperatures, and diluting grape juice if necessary. Additionally, water is used for sanitation purposes to ensure the quality and safety of the final product. This article provides an overview of the existing knowledge regarding the use of water in wineries throughout the winemaking process, water consumption values, effluent treatment, efficient use of water measures, and water reuse.

View Article and Find Full Text PDF

Bioconversion of industrial wastes to hydrogen: A review on waste-to-wealth technologies.

Environ Sci Pollut Res Int

August 2024

Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.

Energy plays a significant role in attaining the sustainable growth of the industrial sector of any nation. The resources for getting energy are limited and cannot fulfill the huge demand for energy supply in the near future. Generating fuels from various waste materials and biomass is widely viewed as a sustainable energy source and a viable option for the future.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!