Hepatic lipase is expressed by osteoblasts and modulates bone remodeling in obesity.

Bone

Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany. Electronic address:

Published: May 2014

A number of unexpected molecules were recently identified as products of osteoblasts, linking bone homeostasis to systemic energy metabolism. Here we identify the lipolytic enzyme hepatic lipase (HL, encoded by Lipc) as a novel cell-autonomous regulator of osteoblast function. In an unbiased genome-wide expression analysis, we find Lipc to be highly induced upon osteoblast differentiation, verified by quantitative Taqman analyses of primary osteoblasts in vitro and of bone samples in vivo. Functionally, loss of HL in vitro leads to increased expression and secretion of osteoprotegerin (OPG), while expression of some osteoblast differentiation makers is impaired. When challenging energy metabolism in a diet-induced obesity (DIO) study, lack of HL leads to a significant increase in bone formation markers and a decrease in bone resorption markers. Accordingly, in the DIO setting, we observe in Lipc(-/-) animals but not in wild-type controls a significant increase in lumbar vertebral trabecular bone mass and formation rate as well as in femoral trabecular bone mass and cortical thickness. Taken together, we demonstrate that HL expressed by osteoblasts has an impact on osteoblast OPG expression and that lack of HL leads to increased bone mass in DIO. These data provide a novel and completely unexpected molecular link in the complex interplay of osteoblasts and systemic energy metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2014.01.001DOI Listing

Publication Analysis

Top Keywords

energy metabolism
12
bone mass
12
hepatic lipase
8
expressed osteoblasts
8
bone
8
systemic energy
8
osteoblast differentiation
8
leads increased
8
opg expression
8
lack leads
8

Similar Publications

Cardiac Regeneration in Adult Zebrafish: A Review of Signaling and Metabolic Coordination.

Curr Cardiol Rep

January 2025

Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India.

Purpose Of Review: This review investigates how post-injury cellular signaling and energy metabolism are two pivotal points in zebrafish's cardiomyocyte cell cycle re-entry and proliferation. It seeks to highlight the probable mechanism of action in proliferative cardiomyocytes compared to mammals and identify gaps in the current understanding of metabolic regulation of cardiac regeneration.

Recent Findings: Metabolic substrate changes after birth correlate with reduced cardiomyocyte proliferation in mammals.

View Article and Find Full Text PDF

Induction of Erythropoietin by dietary Medium-Chain Triacylglycerol in Humans.

Am J Physiol Endocrinol Metab

January 2025

The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.

Erythropoietin (EPO) is pivotal in regulating red blood cell (erythrocyte) concentrations and is primarily synthesized in the kidney. Recent research has unveiled a possible link between elevated circulating concentrations of ketone bodies (KB) and circulating EPO concentrations, however, it is not known whether nutritionally induced endogenous ketogenesis can be a stimulus to induce EPO in humans. Therefore, this study aimed to assess whether acute and chronic intake of medium-chain fatty acid (MCFA)-containing triacylglycerol (MCT), which rapidly enhances endogenous circulating KB, would elevate circulating EPO concentrations in humans, as indicated by prior work with exogenous KB administration.

View Article and Find Full Text PDF

Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.

View Article and Find Full Text PDF

Tamoxifen is an inhibitor of estrogen receptors and was originally developed for breast cancer therapy. Besides, tamoxifen is widely used for Cre-estrogen receptor-mediated conditional knockout in transgenic mice. However, we found that the 3-month feeding of 0.

View Article and Find Full Text PDF

Genetic investigation of hydrogenases in suggests that redox balance via hydrogen cycling enables high ethanol yield.

Appl Environ Microbiol

January 2025

Centro de Engenharia Genética e Biologia Molecular (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.

Unlabelled: is an anaerobic and thermophilic bacterium that has been genetically engineered for ethanol production at very high yields. However, the underlying reactions responsible for electron flow, redox equilibrium, and how they relate to ethanol production in this microbe are not fully elucidated. Therefore, we performed a series of genetic manipulations to investigate the contribution of hydrogenase genes to high ethanol yield, generating evidence for the importance of hydrogen-reacting enzymes in ethanol production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!