A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pharmaceutical characterization and thermodynamic stability assessment of a colloidal iron drug product: iron sucrose. | LitMetric

Pharmaceutical characterization and thermodynamic stability assessment of a colloidal iron drug product: iron sucrose.

Int J Pharm

Food and Drug Administration, Center for Drug Evaluation and Research Office of Testing and Research, Division of Product Quality Research, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States. Electronic address:

Published: April 2014

The study objective was to evaluate the thermodynamic stability of iron sucrose complexes as determined by molecular weight (m.w.) changes. The first part of the study focused on the effect of thermal stress, pH, electrolyte or excipient dilution on the stability of a colloidal iron drug product. Part two focused on the physical and chemical evaluation of the colloidal nature of iron sucrose using a series of characterization experiments: ultracentrifugation, dialysis, particle size, zeta potential, and osmotic pressure analysis. A validated Taguchi-optimized high performance gel permeation chromatography method was used for m.w. determinations. Results indicate m.w. of the iron sucrose complex remained unchanged after excipient dilution, ultracentrifugation, dialysis, and electrolyte dilution. Electrolyte dilution studies indicated the lyophilic nature of the iron sucrose colloid with a particle size of 10nm and zeta potential of 0 mV. The complex deformed at low pH and reformed back at the formulation pH. The complex is stable under mild-to-moderate temperature <50°C but aggregates following prolonged exposure to high temperatures >70°C. In conclusion, the resistance of the complex to breakdown by electrolytic conditions, excipient dilution, ultracentrifugation and the reversible complexation after alteration of formulation pH suggest iron sucrose is a lyophilic colloid in nature and lyophilic colloidals are thermodynamically stable.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2014.01.008DOI Listing

Publication Analysis

Top Keywords

iron sucrose
24
excipient dilution
12
thermodynamic stability
8
iron
8
colloidal iron
8
iron drug
8
drug product
8
nature iron
8
ultracentrifugation dialysis
8
particle size
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!