Alpha stimulation of the human parietal cortex attunes tactile perception to external space.

Curr Biol

Center for Brain and Cognition, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, 08018 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.

Published: February 2014

An intriguing question in neuroscience concerns how somatosensory events on the skin are represented in the human brain. Since Head and Holmes' [1] neuropsychological dissociation between localizing touch on the skin and localizing body parts in external space, touch is considered to operate in a variety of spatial reference frames [2]. At least two representations of space are in competition during orienting to touch: a somatotopic one, reflecting the organization of the somatosensory cortex (S1) [3], and a more abstract, external reference frame that factors postural changes in relation to body parts and/or external space [4, 5]. Previous transcranial magnetic stimulation (TMS) studies suggest that the posterior parietal cortex (PPC) plays a key role in supporting representations as well as orienting attention in an external reference frame [4, 6]. Here, we capitalized on the TMS entrainment approach [7, 8], targeting the intraparietal sulcus (IPS). We found that frequency-specific (10 Hz) tuning of the PPC induced spatially specific enhancement of tactile detection that was expressed in an external reference frame. This finding establishes a tight causal link between a concrete form of brain activity (10 Hz oscillation) and a specific type of spatial representation, revealing a fundamental property of how the parietal cortex encodes information.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2013.12.029DOI Listing

Publication Analysis

Top Keywords

parietal cortex
12
external space
12
external reference
12
reference frame
12
body parts
8
external
6
alpha stimulation
4
stimulation human
4
human parietal
4
cortex
4

Similar Publications

People with aphasia show stable Cumulative Semantic Interference (CSI) when tested repeatedly in a web-based paradigm: A perspective for longitudinal assessment.

Cortex

December 2024

Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Berlin, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany; University Hospital and Faculty of Medicine Leipzig, Clinic for Cognitive Neurology, Leipzig, Germany.

Retrieving words quickly and correctly is an important language competence. Semantic contexts, such as prior naming of categorically related objects, can induce conceptual priming but also lexical-semantic interference, the latter likely due to enhanced competition during lexical selection. In the continuous naming (CN) paradigm, such semantic interference is evident in a linear increase in naming latency with each additional member of a category out of a seemingly random sequence of pictures being named (cumulative semantic interference/CSI effect).

View Article and Find Full Text PDF

Background: Deficits in emotion recognition have been shown to be closely related to social-cognitive functioning in schizophrenic. This study aimed to investigate the event-related potential (ERP) characteristics of social perception in schizophrenia patients and to explore the neural mechanisms underlying these abnormal cognitive processes related to social perception.

Methods: Participants included 33 schizophrenia patients and 35 healthy controls (HCs).

View Article and Find Full Text PDF

Background: Volume alterations in the parietal subregion have received less attention in Alzheimer's disease (AD), and their role in predicting conversion of mild cognitive impairment (MCI) to AD and cognitively normal (CN) to MCI remains unclear. In this study, we aimed to assess the volumetric variation of the parietal subregion at different cognitive stages in AD and to determine the role of parietal subregions in CN and MCI conversion.

Methods: We included 662 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 228 CN, 221 early MCI (EMCI), 112 late MCI (LMCI), and 101 AD participants.

View Article and Find Full Text PDF

: Traumatic brain injury (TBI) occurs after a sudden mechanical force to the skull and represents a significant public health problem. Initial brain trauma triggers secondary pathophysiological processes that induce structural and functional impairment of the central nervous system, even in the regions distant to the lesion site. Later in life, these changes can be manifested as neurodegenerative sequalae that commonly involve proteinopathies, such as transactive DNA-binding protein 43 (TDP-43).

View Article and Find Full Text PDF

Improving brain health via the central executive network.

J Physiol

January 2025

Functional Flow Solutions LLC, Albuquerque, New Mexico, USA.

Cognitive and physical stress have significant effects on brain health, particularly through their influence on the central executive network (CEN). The CEN, which includes regions such as the dorsolateral prefrontal cortex, anterior cingulate cortex and inferior parietal lobe, is central to managing the demands of cognitively challenging motor tasks. Acute stress can temporarily reduce connectivity within the CEN, leading to impaired cognitive function and emotional states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!