This paper introduces a new design and application for direct volume manipulation for visualizing the intraoperative liver resection process. So far, interactive volume deformation and resection have been independently handled due to the difficulty of representing elastic behavior of volumetric objects. Our framework models global shape editing and discontinuous local deformation by merging proxy geometry encoding and displacement mapping. A local-frame-based elastic model is presented to allow stable editing of the liver shape including bending and twisting while preserving the volume. Several tests using clinical CT data have confirmed the developed software and interface can represent the intraoperative state of liver and produce local views of reference vascular structures, which provides a "road map of vessels" that are key features when approaching occluded tumors during surgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2013.12.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!