This paper reports novel development and preliminary application of an image registration technique for diagnosis of abdominal adhesions imaged with cine-MRI (cMRI). Adhesions can severely compromise the movement and physiological function of the abdominal contents, and their presence is difficult to detect. The image registration approach presented here is designed to expose anomalies in movement of the abdominal organs, providing a movement signature that is indicative of underlying structural abnormalities. Validation of the technique was performed using structurally based in vitro and in silico models, supported with Receiver Operating Characteristic (ROC) methods. For the more challenging cases presented to the small cohort of 4 observers, the AUC (area under curve) improved from a mean value of 0.67 ± 0.02 (without image registration assistance) to a value of 0.87 ± 0.02 when image registration support was included. Also, in these cases, a reduction in time to diagnosis was observed, decreasing by between 20% and 50%. These results provided sufficient confidence to apply the image registration diagnostic protocol to sample magnetic resonance imaging data from healthy volunteers as well as a patient suffering from encapsulating peritoneal sclerosis (an extreme form of adhesions) where immobilization of the gut by cocooning of the small bowel is observed. The results as a whole support the hypothesis that movement analysis using image registration offers a possible method for detecting underlying structural anomalies and encourages further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2013.12.002DOI Listing

Publication Analysis

Top Keywords

image registration
24
diagnosis abdominal
8
abdominal adhesions
8
underlying structural
8
image
6
registration
6
radiological diagnosis
4
abdominal
4
adhesions
4
adhesions based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!