Objective: Microtia is a congenital partial or total loss of the external ear with current treatment approaches involving autologous construction from costal cartilage. Alternatively, tissue engineering provides possible use of normal or microtia auricular chondrocytes harvested from patients. This study investigated effects in vitro of basic fibroblast growth factor (FGF-2) and osteogenic protein 1 (OP-1) on human pediatric normal and microtia auricular chondrocytes and their potential proliferation and differentiation for cellular expansion. A working hypothesis was that FGF-2 promotes proliferation and OP-1 maintains an auricular phenotype of these cells.
Methods: Two patients, one undergoing otoplasty and one an ear construction, yielded normal and microtia auricular chondrocytes, respectively. The two donor sets of isolated chondrocytes were equally divided into four experimental cell groups. These were controls without added growth factors and cells supplemented with FGF-2, OP-1 or FGF-2/OP-1 combined. Cells were cultured 3, 5, 7, and 10 days (3 replicates/time point), counted and assayed by RT-qPCR to determine elastin and types II and III collagen gene expression.
Results: Compared to control counterparts, normal and microtia chondrocytes with OP-1 alone were similar in numbers and varied in elastin and types II and III collagen expression over all culture times. Compared to respective controls and chondrocyte groups with OP-1 alone, normal and microtia cell groups with FGF-2 had statistically significant (p<0.05) enhanced proliferation and statistically significant (p<0.05) decreased elastin and types II and III collagen expression over 10 days of culture.
Conclusions: FGF-2 effects on normal and microtia chondrocytes support its use for increasing cell numbers while OP-1 maintains a chondrocyte phenotype, otherwise marked by increasing type III collagen expression and cellular dedifferentiation to fibroblasts in culture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijporl.2013.11.028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!