A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel biodegradable device for intestinal lengthening. | LitMetric

A novel biodegradable device for intestinal lengthening.

J Pediatr Surg

Department of Surgery, Division of Pediatric Surgery, University of California, Los Angeles, Los Angeles, CA 90095-1749, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095-7098, USA. Electronic address:

Published: January 2014

Purpose: Previous studies demonstrated successful mechanical lengthening of rat jejunum using an encapsulated Nitinol spring device over a stabilizing guidewire. We sought to improve the applicability of intestinal lengthening by creating a biodegradable device.

Methods: Using properties of the Nitinol spring device, polycaprolactone (PCL) springs with similar outer diameter and spring constant were created. After in vitro testing in dry and hydrated environments, they were used to lengthen 1-cm isolated segments of rat jejunum in vivo. Retrieved segments were analyzed histologically.

Results: Optimal PCL spring devices had an average spring constant 1.8 ± 0.4 N/m, pitch 1.55 ± 0.85 mm, and band width 0.825 ± 0.016 mm. In vitro testing demonstrated stable spring constants. Jejunal segments were lengthened from 1.0 cm to 2.7 ± 0.4 cm without needing a stabilizing guidewire. Histology demonstrated increased smooth muscle thickness and fewer ganglia compared to controls. Lengthened jejunum was successfully restored into intestinal continuity and demonstrated peristalsis under fluoroscopy.

Conclusions: A novel biodegradable spring device was successfully created and used to mechanically lengthen intestinal segments. Use of a biodegradable device may obviate the need for retrieval after lengthening. This improves device applicability and may be useful for the treatment of short bowel syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpedsurg.2013.09.040DOI Listing

Publication Analysis

Top Keywords

spring device
12
novel biodegradable
8
biodegradable device
8
intestinal lengthening
8
rat jejunum
8
nitinol spring
8
stabilizing guidewire
8
spring constant
8
vitro testing
8
spring
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!