https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=24438899&retmode=xml&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=stromal+cells&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908 Human mesenchymal stromal cells can uptake and release ciprofloxacin, acquiring in vitro anti-bacterial activity. | LitMetric

Background Aims: Traditional antibiotic therapy is based on the oral or systemic injection of antibiotics that are often unable to stop a deep infection (eg, osteomyelitis). We studied whether or not bone marrow stromal cells (BM-MSCs) are able to uptake and release ciprofloxacin (CPX), a fluoroquinolone considered the drug of choice for the treatment of chronic osteomyelitis because of its favorable penetration into poorly vascularized sites of infection.

Methods: Human bone marrow stromal cells (BM-MSCs) were primed with CPX (BM-MSCsCPX) according to a methodology previously standardized in our laboratory for paclitaxel (PTX). The anti-microbial activity of CPX released from BM-MSCs cells (BM-MSCsCPX-CM) or supernatant from cell lysate (BM-MSCsCPX-LYS) was evaluated by agar dilution and microdilution methods on three bacterial strains (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa). To investigate whether or not primed cells (BM-MSCsCPX) were able to directly act on the bacterial growth, co-colture was performed by mixing E. coli suspension to an increasing number of BM-MSCsCPX. The anti-bacterial activity was determined as number of BM-MSCsCPX that completely inhibited bacterial growth.

Results: The results demonstrated that BM-MSCsCPX are able to uptake and then release CPX in the conditioned medium. The loaded antibiotic maintains its active form throughout the process as tested on bacteria.

Conclusions: Our findings suggest that CPX-loaded MSCs may represent an important device for carrying and delivering CPX (and perhaps other antibiotics) into infected deep microenvironments; they could be used for local application and by systemic infusion when their homing capacity into the bone is cleared.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcyt.2013.11.009DOI Listing

Publication Analysis

Top Keywords

stromal cells
12
uptake release
12
release ciprofloxacin
8
anti-bacterial activity
8
bone marrow
8
marrow stromal
8
cells bm-mscs
8
number bm-mscscpx
8
cells
5
cpx
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!