The present study investigated the effects of systemic or intra-dorsolateral periaqueductal gray (dlPAG) administration of CB1 agonists on behavioural changes induced in rats by predator (a live cat) exposure, a model of panic responses. Since nitric oxide (NO) and cannabinoid neurotransmission are proposed to interact in the dlPAG to modulate defensive responses, we also investigated if NO is involved in the biphasic effects of anandamide (AEA) injected into the dlPAG. The results showed that systemic administration of WIN55,212-2 or intra-dlPAG AEA attenuated the defensive behaviours caused by cat exposure. Both compounds produced biphasic curves. The cannabinoid receptor type 1 (CB1) antagonist AM251 prevented the panicolytic effect of AEA whereas a neuronal NOS inhibitor turned the ineffective high dose of AEA into an effective one. These results suggest that modulation of the cannabinoid system could be a target in the treatment of panic disorders. However, the biphasic effects of these compounds could limit their therapeutic potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1461145713001788 | DOI Listing |
Neuroscience
January 2025
Center for Neuroscience, Indian Institute of Science, Bengaluru 560012, India. Electronic address:
Pain and itch are unpleasant and distinct sensations that give rise to behaviors such as reflexive withdrawal and scratching in humans and mice. Interestingly, it has been observed that pain modulate itch through the neural circuits housed in the brain and spinal cord. However, we are yet to fully understand the identities of, and mechanisms by which specific neural circuits mediate pain-induced modulation of itch.
View Article and Find Full Text PDFDisappointment is a vital factor in the learning and adjustment of strategies in reward-seeking behaviors. It helps them conserve energy in environments where rewards are scarce, while also increasing their chances of maximizing rewards by prompting them to escape to environments where richer rewards are anticipated (e.g.
View Article and Find Full Text PDFNeuroimage
January 2025
Department of Psychiatry, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA. Electronic address:
Theranostics
January 2025
Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
: The periaqueductal gray (PAG) is a central hub for the regulation of aggression, whereas the circuitry and molecular mechanisms underlying this regulation remain uncharacterized. In this study, we investigate the role of a distinct cell type, -expressing (Tac2) neurons, located in the dorsomedial PAG (dmPAG) and their modulation of aggressive behavior in mice. : We combined activity mapping, Ca recording, chemogenetic and pharmacological manipulation, and a viral-based translating ribosome affinity purification (TRAP) profiling using a mouse resident-intruder model.
View Article and Find Full Text PDFAddict Neurosci
June 2024
Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Dysregulation of the dopamine (DA) system is a hallmark of substance use disorders, including alcohol use disorder (AUD). Of the DA receptor subtypes, the DA D2 receptors (D2Rs) play a key role in the reinforcing effects of alcohol. D2Rs are expressed in numerous brain regions associated with the regulation of appetitive behaviors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!