Identification and quantitative analysis of polyphenolic compounds from the indigo plant (Polygonum tinctorium Lour).

Nat Prod Res

a Department of Research and Development , Kotobuki Seika Co. Ltd. , 2028 Hatagasaki, Yonago , Tottori 683-0845 , Japan.

Published: September 2014

The indigo plant (Polygonum tinctorium Lour) has been used traditionally as a medicinal plant with a variety of biological effects. Of these, polyphenolic ingredients are postulated to contribute to these activities. However, the identification and quantification of polyphenolic compounds in indigo plants have not been conducted comprehensively until now. This study was undertaken to identify the related ingredients by combined instrumental analyses using ultra-performance liquid chromatography electrospray-ionisation mass spectrometry and gas chromatography-mass spectrometry after the extracts of plant tissues were fractionated by absorption column chromatography. These analyses allowed the identification of kaempferol, quercetin-3-O-glucuronide, quercetin, kaempferol-3-O-glucopyranoside, caffeic acid, chlorogenic acid and tentative 3,5,4'-trihydroxy-6,7-methylenedioxyflavone. Furthermore, predominant polyphenolic compounds were quantified by reverse-phase high-performance liquid chromatography and capillary gas chromatography, revealing the higher proportions of kaempferol, quercetin-3-O-glucuronide and quercetin among them. The results indicate that the indigo plant is a promising source for flavonoids and the related compounds with beneficial medicinal effects.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2013.871719DOI Listing

Publication Analysis

Top Keywords

polyphenolic compounds
12
indigo plant
12
compounds indigo
8
plant polygonum
8
polygonum tinctorium
8
tinctorium lour
8
liquid chromatography
8
kaempferol quercetin-3-o-glucuronide
8
quercetin-3-o-glucuronide quercetin
8
plant
5

Similar Publications

Toxic and carcinogenic compounds, such as synthetic dyes and polyphenols, were widely employed and released as pollutants in a variety of industries, including textiles, food, and cosmetics. Biological oxidation process that used oxidizing enzymes to breakdown pollutant compounds were environmentally favorable. However, due to the cell toxicity of metal ions supplements used for the biosynthesis of oxidizing enzymes like laccase, their efficient application for biological degradation is limited.

View Article and Find Full Text PDF

Background: Medicinal plants have historically been the cornerstone of treatment for a myriad of ailments. With modern pharmacology, many contemporary drugs have been derived from traditional medicine practices. Essential oils from these plants, known for their anti-inflammatory capabilities, have played a significant role in treating conditions such as cardiovascular and inflammatory skin diseases, as well as joint inflammation.

View Article and Find Full Text PDF

Advances in dietary polyphenols: Regulation of inflammatory bowel disease (IBD) via bile acid metabolism and the gut-brain axis.

Food Chem

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China. Electronic address:

Dietary polyphenols represent a diverse group of plant-derived compounds known for their extensive biological activities, offering significant promise in the prevention and treatment of various chronic illnesses. Despite their potential, advancements in their research have been curtailed by challenges in structural analysis and limitations in existing research models. This review marks a pioneering exploration into how bile acids, gut microbiota, and the gut-brain axis serve as conduits through which dietary polyphenols can exert therapeutic effects on Inflammatory Bowel Disease (IBD).

View Article and Find Full Text PDF

Alginate oligosaccharide induces resistance against Penicillium expansum in pears by priming defense responses.

Plant Physiol Biochem

January 2025

School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. Electronic address:

The research intended to explore the control ability of alginate oligosaccharide (AOS) on Penicillium expansum infection in pear fruit by priming response and its mechanism. The results showed that 100 mg L AOS treatment could significantly reduce the incidence of postharvest blue mold and the lesion diameter in pear fruits and maintain their quality. The defense responses induced by AOS treatment alone were relatively mild in pear fruits.

View Article and Find Full Text PDF

Curcumin and hesperetin are plant polyphenols known for their poor solubility. To address this limitation, we prepared amorphous PVP K30-phosphatidylcholine dispersions via hot-melt extrusion. This study aimed to evaluate the effects of the amounts of active ingredients and phosphatidylcholine, as well as the process temperature, on the performance of the dispersions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!