Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Urban courtyards can be regarded as open cavities in the urban area, in which resonances can be excited by waves generated in the neighboring streets. The aim of the present work is to experimentally and numerically investigate low frequency resonance phenomena in these configurations. Experiments are carried out in a scale model and a numerical study is performed with a coupled modal-finite elements method. The method enables the three-dimensional modeling of the acoustic field and thus to take into account the interactions between the courtyard and the street canyon that occur above the roof level, a particular characteristic of wave propagation in urban areas. The attention is focused on two aspects, the amplification of the sound level inside the courtyard and the acoustic attenuation in the street due to resonances. Experimental and numerical results are in good agreement and show a strong resonant behavior of these configurations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.4836295 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!