Understanding cation exchange processes is important for evaluating early diagenetic and synsedimentary processes taking place in marine sediments. To quantify calcium (Ca) exchange and Ca-ammonium exchange in a seawater environment, we performed experiments with a radioactive (45)Ca tracer on clay mineral standards (Fithian illite, montmorillonite and kaolinite) and marine sediments from the North Atlantic Integrated Ocean Drilling Program Site U1306A in artificial seawater (ASW). The results show that equilibrium during the initial attachment of Ca as well as the exchange of Ca by [Formula: see text] is attained in less than 2 min. On average 8-20% of the exchangeable sites of the clay minerals were occupied by Ca in a seawater medium. The conditional selectivity coefficient, describing the [Formula: see text] exchange in ASW is mineral specific and it was determined to be 0.07 for montmorillonite, 0.05 for a natural marine sediment and 0.013 for Fithian illite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10256016.2013.806505 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
Cadmium (Cd) isotopes have recently emerged as novel tracers of Cd sources and geochemical processes. Widespread clay minerals play a key role in Cd migration due to their strong adsorption capacity, but the mechanism of Cd isotope fractionation during adsorption onto clay minerals is poorly understood. Here, we experimentally investigated the adsorption mechanisms of Cd on montmorillonite (2:1) and kaolinite (1:1) by using extended X-ray absorption fine structure (EXAFS) spectroscopy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Research Center of Resource Chemistry and Energy Materials, Key Laboratory of Clay Mineral of Gansu, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China.
Clay minerals show significant potential as fillers in polymer composite solid electrolytes (CSEs), whereas the influence of their microstructures on lithium-ion (Li) transport properties remains insufficiently understood. Herein, we design advanced poly(ethylene oxide) (PEO)-based CSEs incorporating clay minerals with diverse microstructures including 1D halloysite nanotubes, 2D Laponite (Lap) nanosheets, and 3D porous diatomite. These minerals form distinct Li transport pathways at the clay-PEO interfaces due to their varied structural configurations.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan.
Clay minerals are actively used to obtain a bioactive composite. Kaolinite, as a representative of clay minerals, possesses unique properties essential for the creation of biocomposite materials. This mineral, characterized by its distinctive layered structure, is chemically inert, highly stable, thermally resistant, eco-friendly, biocompatible, and non-toxic.
View Article and Find Full Text PDFExposure to ambient particulate matter (PM) with an aerodynamic diameter of <10 μm (PM) is a well-established health hazard. There is increasing evidence that geogenic (Earth-derived) particles can induce adverse biological effects upon inhalation, though there is high variability in particle bioreactivity that is associated with particle source and physicochemical properties. In this study, we investigated physicochemical properties and biological reactivity of volcanic ash from the April 2021 eruption of La Soufrière volcano, St.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan Province 610031, China.
Chemical weathering of lithologies with high geochemical backgrounds such as black shale has been proposed to be a critical source for toxic elements in soil and water systems. However, mechanisms controlling the release, migration and enrichment of toxic elements during black shale weathering are poorly understood. This study utilized a suite of micro analytical techniques such as TESCAN integrated mineral analyzer (TIMA), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and electron micro-probe analysis (EMPA) to elucidate the intimate relationship between mineralogical transformations and elemental behaviors from profile scale to mineral scale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!