Lignin from biomass can become a sustainable source of aromatic compounds. Its depolymerization can be accomplished through hydrogenolysis, although the development of catalysts based on cheap and abundant metals is lacking. Herein, a sustainable composite based on titanium nitride and nickel is synthesized and employed as catalyst for the hydrogenolysis of aryl ethers as models for lignin. The catalytic activity of the new material during hydrogenation reactions is proven to be superior to that of either component alone. In particular, different aryl ethers could be efficiently converted under relatively mild conditions into aromatic compounds and cycloalkanes within minutes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja4119412DOI Listing

Publication Analysis

Top Keywords

aryl ethers
12
catalyst hydrogenolysis
8
hydrogenolysis aryl
8
aromatic compounds
8
titanium nitride-nickel
4
nitride-nickel nanocomposite
4
nanocomposite heterogeneous
4
heterogeneous catalyst
4
ethers lignin
4
lignin biomass
4

Similar Publications

Objectives: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, but no drugs can cure this disease. Chalcones possess good antioxidant activity, anti-neuroinflammatory activity, neuroprotective effects, inhibitory effects on Aβ aggregation, and Aβ disaggregation ability. Therefore, chalcones are ideal lead compounds, and the discovery of novel anti-AD agent-based chalcones is necessary.

View Article and Find Full Text PDF

Adaptive alcohols-alcohols cross-coupling via TFA catalysis: access of unsymmetrical ethers.

BMC Chem

January 2025

The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, 341000, Jiangxi, People's Republic of China.

Article Synopsis
  • Ethers are important organic compounds used in various industries, including pharmaceuticals and materials.
  • The study presents a method using TFA as a catalyst to efficiently create unsymmetrical ethers from alcohols and different oxygen nucleophiles under mild conditions.
  • This method shows high efficiency, with notable yields and practicality for large-scale production, demonstrating its potential for industrial applications.
View Article and Find Full Text PDF

The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.

View Article and Find Full Text PDF

Nanocellulose-reinforced nanofiber composite poly(aryl ether ketone) polymer electrolyte for advanced lithium batteries.

Int J Biol Macromol

January 2025

Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China; College of Chemical Engineering, Changchun University of Technology, 2055 Yanan Street, Changchun 130024, PR China. Electronic address:

Solid polymer batteries (SPEs) are highly desirable for energy storage because of the urgent need for higher energy density and safer lithium ion batteries (LIBs). In this work, the single-ion lithium salt PAEK-LiCPSI was synthesized by grafting 3-chloropropanesulfonyl trifluoromethanesulimide lithium (LiCPSI) onto poly(aryl ether ketone) (PAEK). Nanocellulose (NCC), PAEK-LiCPSI, and poly(vinylidene fluoride) (PVDF-HFP) were compounded to obtain NCC reinforced high-performance nanofiber composite polymer electrolytes (NCC/PAEK/PVDF) through electrospinning, which presented tensile strength of 15.

View Article and Find Full Text PDF

The efficient utilization of lignin, a pivotal component of lignocellulosic biomass, is crucial for advancing sustainable biorefinery processes. However, optimizing lignin valorization remains challenging due to its intricate structure and susceptibility to undesirable reactions during processing. In this study, we delve into the impact of various pretreatment agents on birch lignin, aiming to enhance its catalytic oxidation and depolymerization under polyoxometalates (POMs) catalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!