The plant hormone ethylene is involved in the regulation of a multitude of plant processes, ranging from seed germination to organ senescence. Ethylene induces fruit ripening in climacteric fruits, such as coffee, being directly involved in fruit ripening time and synchronization. Coffee early cultivars usually show a more uniform ripening process although little is known about the genetic factors that promote the earliness of ripening. Thus, this work aimed to characterize the putative members of the coffee (Coffea arabica) ethylene biosynthesis and signaling pathways, as well as to analyze the expression patterns of these members during fruit ripening of early (Catucaí 785-15) and late (Acauã) coffee cultivars. Reverse Transcription-qPCR analysis of the four biosynthesis genes (CaACS1-like; CaACO1-like; CaACO4-like e CaACO5-like) analyzed in this study showed that CaACO1-like and CaACO4-like displayed an expression pattern typically observed in climacteric fruits, being up-regulated during ripening. CaACS1-like gene expression was also up-regulated during fruit ripening of both cultivars, although in a much lesser extent when compared to the changes in CaACO1-like and CaACO4-like gene expression. CaACO5-like was only induced in raisin fruit and may be related to senescence processes. On the other hand, members of the ethylene signaling pathway (CaETR1-like, CaETR4-like, CaCTR2-like, CaEIN2-like, CaEIN3-like, CaERF1) showed slightly higher expression levels during the initial stages of development (green and yellow-green fruits), except for the ethylene receptors CaETR1-like and CaETR4-like, which were constitutively expressed and induced in cherry fruits, respectively. The higher ethylene production levels in Catucaí 785-15 fruits, indicated by the expression analysis of CaACO1-like and CaACO4-like, suggest that it promotes an enhanced CaETR4-like degradation, leading to an increase in ethylene sensitivity and consequently to an earliness in the ripening process of this cultivar. Ethylene production in Acauã fruits may not be sufficient to inactivate the CaETR4-like levels and thus ripening changes occur in a slower pace. Thus, the expression analysis of the ethylene biosynthesis and signaling genes suggests that ethylene is directly involved in the determination of the ripening time of coffee fruits, and CaACO1-like, CaACO4-like and CaETR4-like may display essential roles during coffee fruit ripening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-014-2026-1 | DOI Listing |
Sci Rep
January 2025
Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská, 1665/1, 61300, Brno, Czech Republic.
Background: Persimmon (Diospyros kaki L.) belongs to the Ebenaceae family, which includes six genera and about 400 species. This study evaluated the genetic diversity of 100 persimmon accessions from Hatay province, Türkiye using 42 morphological and pomological traits, along with inter simple sequence repeat (ISSR) markers and multivariate analysis.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, China; Hwamei College of Life and Health Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315100, China. Electronic address:
Gibberellin (GA) is one of the crucial plant hormones involved in fruit ripening regulation. GASA genes, which respond to GA and encode cysteine-rich peptides, are prevalent in plants. While the GASA gene family has been identified in various plants, its role in persimmon fruit ripening remains unclear.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, València, Spain.
Plant carotenoids are plastid-synthesized isoprenoids with roles as photoprotectants, pigments, and precursors of bioactive molecules such as the hormone abscisic acid (ABA). The first step of the carotenoid biosynthesis pathway is the production of phytoene from geranylgeranyl diphosphate (GGPP), catalyzed by phytoene synthase (PSY). GGPP produced by plastidial GGPP synthases (GGPPS) is channeled to the carotenoid pathway by direct interaction of GGPPS and PSY enzymes.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India.
In the background of antioxidation properties of selenium (Se) in plants, the role of nano‑selenium (Se-NPs) was justified in the modulation of Capsicum fruit ripening. In our study, exogenous application of 8 mg L Se-NPs on fruits through 7 days (D) of postharvest storage regulated decay rate, water loss and fruit coat firmness. Se-NPs recovered fruit coat damages with reduction of ion leakage, lipid oxidation, and accumulation of polyamines.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (Himachal Pradesh), 176061, India; Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India. Electronic address:
The aim of current work was to develop a novel, simple, sensitive, and reliable method for screening and quantification of thirty-two polyphenol compounds from Cordia myxa (C. myxa) using Ultra Performance Liquid Chromatography Photodiode Array detector (UPLC-PDA). With the help of the quaternary solvent manager and a comparison study of seven different columns packed with silica particles that are less than two micron thick (1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!