Functional heterogeneity of PAX5 chimeras reveals insight for leukemia development.

Mol Cancer Res

Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung e.V. Zimmermannplatz 10, 1090 Vienna, Austria.

Published: April 2014

Unlabelled: PAX5, a transcription factor pivotal for B-cell commitment and maintenance, is one of the most frequent targets of somatic mutations in B-cell precursor acute lymphoblastic leukemia. A number of PAX5 rearrangements result in the expression of in-frame fusion genes encoding chimeric proteins, which at the N-terminus consistently retain the PAX5 DNA-binding paired domain fused to the C-terminal domains of a markedly heterogeneous group of fusion partners. PAX5 fusion proteins are thought to function as aberrant transcription factors, which antagonize wild-type PAX5 activity. To gain mechanistic insight into the role of PAX5 fusion proteins in leukemogenesis, the biochemical and functional properties of uncharacterized fusions: PAX5-DACH1, PAX5-DACH2, PAX5-ETV6, PAX5-HIPK1, and PAX5-POM121 were ascertained. Independent of the subcellular distribution of the wild-type partner proteins, ectopic expression of all PAX5 fusion proteins showed a predominant nuclear localization, and by chromatin immunoprecipitation all of the chimeric proteins exhibited binding to endogenous PAX5 target sequences. Furthermore, consistent with the presence of potential oligomerization motifs provided by the partner proteins, the self-interaction capability of several fusion proteins was confirmed. Remarkably, a subset of the PAX5 fusion proteins conferred CD79A promoter activity; however, in contrast with wild-type PAX5, the fusion proteins were unable to induce Cd79a transcription in a murine plasmacytoma cell line. These data show that leukemia-associated PAX5 fusion proteins share some dominating characteristics such as nuclear localization and DNA binding but also show distinctive features.

Implications: This comparative study of multiple PAX5 fusion proteins demonstrates both common and unique properties, which likely dictate their function and impact on leukemia development.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-13-0337DOI Listing

Publication Analysis

Top Keywords

fusion proteins
32
pax5 fusion
28
pax5
13
proteins
12
fusion
10
leukemia development
8
chimeric proteins
8
wild-type pax5
8
partner proteins
8
nuclear localization
8

Similar Publications

Single-Virus Microscopy of Biochemical Events in Viral Entry.

JACS Au

January 2025

Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, Virginia 22908, United States.

Cell entry by enveloped viruses involves a set of multistep, multivalent interactions between viral and host proteins as well as manipulation of nanoscale membrane mechanics by these interacting partners. A mechanistic understanding of these events has been challenging due to the complex nature of the interactions and the event-to-event heterogeneity involved. Single-virus microscopy has emerged as a powerful technique to probe viral binding and fusion kinetics.

View Article and Find Full Text PDF

Background: Intracellular membraneless organelles formed by liquid-liquid phase separation (LLPS) function in diverse physiological processes and have been linked to tumor-promoting properties. The nucleolus is one of the largest membraneless organelle formed through LLPS. Deubiquitylating enzymes (DUBs) emerge as novel therapeutic targets against human cancers.

View Article and Find Full Text PDF

Pre-eclampsia is a known hypertensive disorder of pregnancy. While abnormal placentation and poor trophoblast invasion into maternal endometrium during blastocyst implantation are primary causes of pre-eclampsia, the underlying mechanisms remain elusive. Hematopoietic PBX-Interacting protein (HPIP) is an estrogen receptor (ER) interacting protein that plays a pivotal role in cell proliferation, migration, and differentiation; however, its role in trophoblast functions is largely unknown.

View Article and Find Full Text PDF

Cloning and functional characterization of the caffeine oxidase gene CsCDH from Camellia sinensis.

Int J Biol Macromol

January 2025

Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China. Electronic address:

Theacrine, a purine alkaloid with pharmacological effects such as calming and anti-depressive activities, is biosynthesized through a key rate-limiting enzyme, caffeine oxidase. Despite its importance, the caffeine oxidase gene (CsCDH) in Camellia sinensis has not been cloned to date. We successfully isolated the full-length CsCDH cDNA, which contains a 501-bp open reading frame (ORF) encoding a 166-amino-acid protein with a calculated molecular weight of 18.

View Article and Find Full Text PDF

Qiangji Decoction mitigates neuronal damage, synaptic and mitochondrial dysfunction in SAMP8 mice through the regulation of ROCK2/Drp1-mediated mitochondrial dynamics.

J Ethnopharmacol

January 2025

Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, Hubei, 445000, PR China. Electronic address:

Ethnopharmacological Relevance: Qiangji Decoction (QJD), a Chinese medicine, is widely used in Traditional Chinese Medicine to treat amnesia and Alzheimer's disease (AD), showing significant anti-AD effects. However, the precise mechanisms behind these effects are not well understood and require more research.

Aim Of The Study: This study aims to elucidate the mechanisms by which QJD ameliorates neuronal damage, synaptic dysfunction, and mitochondrial impairment in AD through the regulation of ROCK2/Drp1-mediated mitochondrial dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!