Unlabelled: PAX5, a transcription factor pivotal for B-cell commitment and maintenance, is one of the most frequent targets of somatic mutations in B-cell precursor acute lymphoblastic leukemia. A number of PAX5 rearrangements result in the expression of in-frame fusion genes encoding chimeric proteins, which at the N-terminus consistently retain the PAX5 DNA-binding paired domain fused to the C-terminal domains of a markedly heterogeneous group of fusion partners. PAX5 fusion proteins are thought to function as aberrant transcription factors, which antagonize wild-type PAX5 activity. To gain mechanistic insight into the role of PAX5 fusion proteins in leukemogenesis, the biochemical and functional properties of uncharacterized fusions: PAX5-DACH1, PAX5-DACH2, PAX5-ETV6, PAX5-HIPK1, and PAX5-POM121 were ascertained. Independent of the subcellular distribution of the wild-type partner proteins, ectopic expression of all PAX5 fusion proteins showed a predominant nuclear localization, and by chromatin immunoprecipitation all of the chimeric proteins exhibited binding to endogenous PAX5 target sequences. Furthermore, consistent with the presence of potential oligomerization motifs provided by the partner proteins, the self-interaction capability of several fusion proteins was confirmed. Remarkably, a subset of the PAX5 fusion proteins conferred CD79A promoter activity; however, in contrast with wild-type PAX5, the fusion proteins were unable to induce Cd79a transcription in a murine plasmacytoma cell line. These data show that leukemia-associated PAX5 fusion proteins share some dominating characteristics such as nuclear localization and DNA binding but also show distinctive features.
Implications: This comparative study of multiple PAX5 fusion proteins demonstrates both common and unique properties, which likely dictate their function and impact on leukemia development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1541-7786.MCR-13-0337 | DOI Listing |
JACS Au
January 2025
Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, Virginia 22908, United States.
Cell entry by enveloped viruses involves a set of multistep, multivalent interactions between viral and host proteins as well as manipulation of nanoscale membrane mechanics by these interacting partners. A mechanistic understanding of these events has been challenging due to the complex nature of the interactions and the event-to-event heterogeneity involved. Single-virus microscopy has emerged as a powerful technique to probe viral binding and fusion kinetics.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China.
Background: Intracellular membraneless organelles formed by liquid-liquid phase separation (LLPS) function in diverse physiological processes and have been linked to tumor-promoting properties. The nucleolus is one of the largest membraneless organelle formed through LLPS. Deubiquitylating enzymes (DUBs) emerge as novel therapeutic targets against human cancers.
View Article and Find Full Text PDFCell Signal
January 2025
Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India. Electronic address:
Pre-eclampsia is a known hypertensive disorder of pregnancy. While abnormal placentation and poor trophoblast invasion into maternal endometrium during blastocyst implantation are primary causes of pre-eclampsia, the underlying mechanisms remain elusive. Hematopoietic PBX-Interacting protein (HPIP) is an estrogen receptor (ER) interacting protein that plays a pivotal role in cell proliferation, migration, and differentiation; however, its role in trophoblast functions is largely unknown.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China; National Engineering Research Center for Utilization of Functional Ingredients from Plants, Hunan Agricultural University, Changsha 410128, Hunan, China; Collaborative Innovation Center for Utilization of Functional Ingredients from Plants, Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China. Electronic address:
Theacrine, a purine alkaloid with pharmacological effects such as calming and anti-depressive activities, is biosynthesized through a key rate-limiting enzyme, caffeine oxidase. Despite its importance, the caffeine oxidase gene (CsCDH) in Camellia sinensis has not been cloned to date. We successfully isolated the full-length CsCDH cDNA, which contains a 501-bp open reading frame (ORF) encoding a 166-amino-acid protein with a calculated molecular weight of 18.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, Hubei, 445000, PR China. Electronic address:
Ethnopharmacological Relevance: Qiangji Decoction (QJD), a Chinese medicine, is widely used in Traditional Chinese Medicine to treat amnesia and Alzheimer's disease (AD), showing significant anti-AD effects. However, the precise mechanisms behind these effects are not well understood and require more research.
Aim Of The Study: This study aims to elucidate the mechanisms by which QJD ameliorates neuronal damage, synaptic dysfunction, and mitochondrial impairment in AD through the regulation of ROCK2/Drp1-mediated mitochondrial dynamics.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!