Polyhydroxyalkanoates (PHAs) are biodegradable polyesters with comparable properties to some petroleum-based polyolefins. PHA production can be achieved in open, mixed microbial cultures and thereby coupled to wastewater and solid residual treatment. In this context, waste organic matter is utilised as a carbon source in activated sludge biological treatment for biopolymer synthesis. Within the EU project Routes, the feasibility of PHA production has been evaluated in processes for sludge treatment and volatile fatty acid (VFA) production and municipal wastewater treatment. This PHA production process is being investigated in four units: (i) wastewater treatment with enrichment and production of a functional biomass sustaining PHA storage capacity, (ii) acidogenic fermentation of sludge for VFA production, (iii) PHA accumulation from VFA-rich streams, and (iv) PHA recovery and characterisation. Laboratory- and pilot-scale studies demonstrated the feasibility of municipal wastewater and solid waste treatment alongside production of PHA-rich biomass. The PHA storage capacity of biomass selected under feast-famine with municipal wastewater has been increased up to 34% (g PHA g VSS(-1)) in batch accumulations with acetate during 20 h. VFAs obtained from waste activated sludge fermentation were found to be a suitable feedstock for PHA production.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2013.643DOI Listing

Publication Analysis

Top Keywords

pha production
20
municipal wastewater
16
wastewater treatment
12
production
9
pha
9
wastewater solid
8
activated sludge
8
vfa production
8
pha storage
8
storage capacity
8

Similar Publications

Upper respiratory tract infections (URTIs) are a prevalent health issue, causing considerable morbidity. Despite the availability of conventional treatments, there is an increasing interest in natural products due to their potential antiviral and immunomodulatory benefits. This study aims to evaluate the efficacy of an ELA blend (E-, L-, A-) in preventing and alleviating the symptoms of URTIs.

View Article and Find Full Text PDF
Article Synopsis
  • Polyhydroxyalkanoates (PHAs) are biodegradable plastics that can be produced through a mixed culture-based process, but ammonia nitrogen can hinder this production.
  • This study explores ways to efficiently reuse ammonia nitrogen to enhance PHA synthesis and reduce waste.
  • Results showed a significant increase in PHA production when using specific substrate and process conditions, while also effectively recycling ammonia without negatively affecting the mixed culture's properties.
View Article and Find Full Text PDF

The depletion of fossil resources, coupled with global warming and adverse environmental impact of traditional petroleum-based plastics, have necessitated the discovery of renewable resources and innovative biodegradable materials. Lignocellulosic biomass (LB) emerges as a highly promising, sustainable and eco-friendly approach for accumulating polyhydroxyalkanoate (PHA), as it completely bypasses the problem of "competition for food". This sustainable and economically efficient feedstock has the potential to lower PHA production costs and facilitate its competitive commercialization, and support the principles of circular bioeconomy.

View Article and Find Full Text PDF

A biohydrogen and polyhydroxyalkanoates (PHA)-producing natural photoheterotrophic mixed culture composed mainly by Rhodopseudomonas palustris and Clostridium sp was studied by a proteomic analysis under non-growth conditions (nitrogen-absence and organic acids). Proteins in C. pasteurianum were upregulated, particularly those related to stress response.

View Article and Find Full Text PDF

Converting multiple hydrophobic aromatic plastic monomers into a single water-soluble substrate to increase bioavailability for the synthesis of polyhydroxyalkanoates by bacteria using batch, fed batch and continuous cultivation.

J Biotechnol

December 2024

School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin D04 N2E5, Ireland; BiOrbic Bioeconomy Research Centre, O'Brien Centre for Science [Science East], University College Dublin, Dublin D04 N2E5, Ireland. Electronic address:

We demonstrate the proof of concept of increasing the bioavailability of carbon substrates, derived from plastic waste, for their conversion to the biodegradable polymer polyhydroxyalkanoate [PHA] by bacteria and test various approaches to PHA accumulation through batch, fed batch and continuous culture. Styrene, ethylbenzene, and toluene are produced from the pyrolysis of mixed plastic waste (Kaminsky, 2021; Miandad et al., 2017), but they are volatile and poorly soluble in water making them difficult to work with in aqueous fermentation systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!