Methods for generating induced pluripotent stem cells (iPSCs) for disease modeling and cell therapies have progressed from integrating vectors to transient delivery of reprogramming factors, avoiding permanent genomic modification. A major limitation of unmodified iPSCs is the assessment of their distribution and contribution to adverse reactions in autologous cell therapy. Here, we report that polycistronic lentiviral vectors with single Flp recombinase (Flp) recognition target (FRT) sites can be used to generate murine iPSCs that are devoid of the reprogramming cassette but carry an intergenic 300-bp long terminal repeat sequence. Performing quantitative polymerase chain reaction on this marker, we could determine genetic identity and tissue contribution of iPSC-derived teratomas in mice. Moreover, we generated iPSCs carrying heterospecific FRT twin sites, enabling excision and recombinase-mediated cassette exchange (RMCE) of the reprogramming cassette for another expression unit of choice. Following screening of iPSCs for "safe harbor" integration sites, expression cassettes were introduced by RMCE into various previously silenced loci of selected single-copy iPSCs. Analysis of DNA methylation showed that RMCE reverted the local epigenetic signature, which allowed transgene expression in undifferentiated iPSCs and in differentiated progeny. These findings support the concept of creating clonotypically defined exchangeable and traceable pluripotent stem cells for disease research and cell therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015239 | PMC |
http://dx.doi.org/10.1038/mt.2014.4 | DOI Listing |
Adv Exp Med Biol
January 2025
Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye.
Primary familial brain calcification (PFBC) is a rare, progressive central nervous system (CNS) disorder without a cure, and the current treatment methodologies primarily aim to relieve neurological and psychiatric symptoms of the patients. The disease is characterized by abnormal bilateral calcifications in the brain, however, our mechanistic understanding of the biology of the disease is still limited. Determining the roles of the specific cell types and molecular mechanisms involved in the pathophysiological processes of the disease is of great importance for the development of novel and effective treatment methodologies.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
Human-induced pluripotent stem cell (hiPSC) technology has been applied in pathogenesis studies, drug screening, tissue engineering, and stem cell therapy, and patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs) have shown promise in disease modeling, including diabetic cardiomyopathy. High glucose (HG) treatment induces lipotoxicity in hiPSC-CMs, as evidenced by changes in cell size, beating rate, calcium handling, and lipid accumulation. Empagliflozin, an SGLT2 inhibitor, effectively mitigates the hypertrophic changes, abnormal calcium handling, and contractility impairment induced by HG.
View Article and Find Full Text PDFCurr Pain Headache Rep
January 2025
Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA.
Purpose Of Review: The use of stem cell therapy is a rapidly evolving and progressing frontier of science that has been used to treat illnesses such as malignancies, immunodeficiencies, and metabolic syndromes. This review aims to give an overview of the use of stem cell therapy in the treatment of pain caused by diabetic neuropathy, osteoarthritis, and other spinal cord pathologies.
Recent Findings: Pain is defined as a generalized or localized feeling of distress related to a physical or emotional stimulus and can be caused by a multitude of pathologies.
Proc Natl Acad Sci U S A
January 2025
Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo 113-8510, Japan.
Intercellular transmission of messenger RNA (mRNA) is being explored in mammalian species using immortal cell lines. Here, we uncover an intercellular mRNA transfer phenomenon that allows for the adaptation and reprogramming of human primed pluripotent stem cells (hPSCs). This process is induced by the direct cell contact-mediated coculture with mouse embryonic stem cells under the condition impermissible for primed hPSC culture.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.
Purpose: The purpose of this study was to investigate the activated core kinases involved in the DNA damage responses (DDR) during ferroptosis of retinal pigment epithelial (RPE) cells in vitro and their regulatory effects on ferroptosis.
Methods: Ferroptosis was induced by erastin in induced RPE (iRPE) cells derived from human umbilical cord mesenchymal stem cells (hUCMSCs), hUCMSCs, and induced pluripotent stem cell-derived RPE (iPSC-RPE) cells. CCK8 was employed to measure the cell viability.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!