The synthesis of diverse three-dimensional libraries has become of paramount importance for obtaining better leads for drug discovery. Such libraries are predicted to fare better than traditional compound collections in phenotypic screens and against difficult targets. Herein we report the diversity-oriented synthesis of a compound library using rhodium carbenoid chemistry to access structurally diverse three-dimensional molecules and show that they access biologically relevant areas of chemical space using cheminformatic analysis. High-content screening of this library for antimitotic activity followed by chemical modification identified 'Dosabulin', which causes mitotic arrest and cancer cell death by apoptosis. Its mechanism of action is determined to be microtubule depolymerization, and the compound is shown to not significantly affect vinblastine binding to tubulin; however, experiments suggest binding to a site vicinal or allosteric to Colchicine. This work validates the combination of diversity-oriented synthesis and phenotypic screening as a strategy for the discovery of biologically relevant chemical entities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncomms4155 | DOI Listing |
Curr Org Synth
January 2025
Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran.
Carbodiimides (R-N=C=N-R) are well-known intermediates for the preparation of a variety of N-containing compounds, including heterocycles and amide linkages. Be-cause of their high reactivity and easy availability, carbodiimides have been broadly used as building blocks in the synthesis of structurally complex and diverse heterocyclic com-pounds in multi-component reactions (MCRs). Recent advances in diversity-oriented syn-thesis with carbodiimide-based MCRs are discussed in this minireview and are classified into different sections based on the key transformation involved in the reactions, such as heteroannulation and nucleophilic addition reactions which containing metal-catalyzed re-actions, multi-component reactions, and catalyst-free reactions subsections.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
APIGENEX s.r.o., Poděbradská 173/5, Prague 19000, Czech Republic.
Objective: In search of efficient anticancer agents, we aimed at the design and synthesis of a library of tetrasubstituted alkenes. These are structural analogues of tamoxifen, one of the widely used anticancer therapeutics.
Methods: Our small organic compound library was prepared via a chemical synthesis in the solution using the Larock three-component coupling reaction, which is known to tolerate diverse functional groups.
Org Lett
January 2025
College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China.
We report herein a robust enantioselective ring opening coupling of oxabenzonorbornadienes via Pd(II)-catalyzed domino cyclization of alkynylanilines, which features the formation of three covalent bonds and two contiguous stereocenters with excellent enantio- and diastereoselectivity and a broad substrate scope. The good functional group tolerance of this domino desymmetrization strategy enables efficient late-stage transformation of natural product-derived alkynylanilines. The resulting indolated dihydronaphthols could serve as a valuable platform to streamline the diversity-oriented synthesis of other valuable enantioenriched tetrahydronaphthalene derivatives.
View Article and Find Full Text PDFChemistry
January 2025
Florida State University, Chemistry and Biochemistry, 95 Chieftan Way, 32306, Tallahassee, UNITED STATES OF AMERICA.
Since antiquity, alkaloid natural products have served as medicinal ingredients that still contribute as an inspiration for the development of novel therapeutics. For the synthetic chemist, much of the importance of natural products lies in their acting as a forcing-function for the invention of new synthetic strategies and tactics for molecular assembly. With this rich history in mind, it remains an important goal for chemists to build nitrogenous structures with greater efficiency, abiding by economies of synthesis.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Herbert Wertheim College of Medicine, Center for Translational Science, Florida International University, Port Saint Lucie, FL 34987, USA.
Small-molecule probes are powerful tools for studying biological systems and can serve as lead compounds for developing new therapeutics. Especially, nitrogen heterocycles are of considerable importance in the pharmaceutical field. These compounds are found in numerous bioactive structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!