In this review, we compare and contrast current knowledge about in vitro and in vivo protein folding. Major advances in understanding fundamental principles underlying protein folding in optimized in vitro conditions have yielded detailed physicochemical principles of folding landscapes for small, single domain proteins. In addition, there has been increased research focusing on the key features of protein folding in the cell that differentiate it from in vitro folding, such as co-translational folding, chaperone-facilitated folding, and folding in crowded conditions with many weak interactions. Yet these two research areas have not been bridged effectively in research carried out to date. This review points to gaps between the two that are ripe for future research. Moreover, we emphasize the biological selection pressures that impact protein folding in vivo and how fitness drives the evolution of protein sequences in ways that may place foldability in tension with other requirements on a given protein. We suggest that viewing the physicochemical process of protein folding through the lens of evolution will unveil new insights and pose novel challenges about in-cell folding landscapes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984617 | PMC |
http://dx.doi.org/10.1016/j.sbi.2013.11.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!