Expression, characterization and homology modeling of a novel eukaryotic GH84 β-N-acetylglucosaminidase from Penicillium chrysogenum.

Protein Expr Purif

Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Praha 4, Czech Republic.

Published: March 2014

β-N-acetylglucosaminidases from the family 84 of glycoside hydrolases form a small group of glycosidases in eukaryotes responsible for the modification of nuclear and cytosolic proteins with O-GlcNAc, thus they are involved in a number of important cell processes. Here, the first fungal β-N-acetylglucosaminidase from Penicillium chrysogenum was expressed in Pichia pastoris and secreted into the media, purified and characterized. Moreover, homology modeling and substrate and inhibitor docking were performed to obtain structural information on this new member of the GH84 family. Surprisingly, we found that this fungal β-N-acetylglucosaminidase with its sequence and structure perfectly fitting to the GH84 family displays biochemical properties rather resembling the β-N-acetylhexosaminidases from the family 20 of glycoside hydrolases. This work helped to increase the knowledge on the scarcely studied glycosidase family and revealed a new type of eukaryotic β-N-acetylglucosaminidase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2014.01.002DOI Listing

Publication Analysis

Top Keywords

homology modeling
8
β-n-acetylglucosaminidase penicillium
8
penicillium chrysogenum
8
family glycoside
8
glycoside hydrolases
8
fungal β-n-acetylglucosaminidase
8
gh84 family
8
family
5
expression characterization
4
characterization homology
4

Similar Publications

Peas ( L.) serve as a vital model for plant development and stress research. The () gene family, encoding essential motor proteins, remains understudied in peas.

View Article and Find Full Text PDF

Background: We sought to determine whether transamniotic stem cell therapy (TRASCET) could be a viable alternative for the fetal administration of genetically modified hematopoietic stem cells (HSCs) carrying a human hemoglobin subunit beta gene (hHBB) in a healthy syngeneic rat model.

Methods: Time-dated pregnant Lewis dams underwent volume-matched intra-amniotic injections in all their fetuses (n = 61) of a suspension of donor HSCs genetically modified with either both a hHBB gene and a firefly luciferase reporter gene (n = 42) or the firefly luciferase reporter gene alone to control for HBB-derived protein interspecies homology (n = 19) on gestational day 17 (E17; term = E21). Donor HSCs consisted of syngeneic cells phenotyped by flow cytometry with successful hHBB transduction confirmed by ELISA prior to administration in vivo.

View Article and Find Full Text PDF

Structure-Function Relationships of the CMP-Sialic Acid Transporter through Analysis of a Pathogenic Variant in an Alternatively Spliced Functional Isoform.

ACS Omega

December 2024

Laboratorio de Glicobiología y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, México.

The human CMP-sialic acid transporter (hCST) is a mammalian highly conserved type III antiporter that translocates CMP-sialic acid into the Golgi lumen, supporting sialylation. Although different works have focused on elucidating structure-function relationships in the hCST, this is the first study to address them in an alternatively spliced isoform. We have previously reported the expression of a functional human del177 isoform that has skipping of exon 6, resulting in a loss of 59 amino acids, without change in the open reading frame and conserving its C-terminal region.

View Article and Find Full Text PDF

Chemical characterization and classification of vegetable oils using DESI-MS coupled with a neural network.

Food Chem

December 2024

Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China. Electronic address:

This study tackled mislabeling fraud in vegetable oils, driven by price disparities and profit motives, by developing an approach combining desorption electrospray ionization mass spectrometry (DESI-MS) with a shallow convolutional neural network (SCNN). The method was designed to characterize lipids and distinguish between nine vegetable oils: corn, soybean, peanut, sesame, rice bran, sunflower, camellia, olive, and walnut oils. The optimized DESI-MS method enhanced the ionization of non-polar glycerides and detected ion adducts like [TG + Na], [TG + NH].

View Article and Find Full Text PDF

Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!