Background & Objectives: Microbial infections in the normally sterile environment of the middle ear cavity in patients with otitis media trigger expression of Toll-like receptors (TLRs), cytokines, and nitric oxide. We evaluated the expression levels of TLR-1, -2, -4, -5, -6, and -9, interleukin (IL)-6, -8, -10, and -12, interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), and nitric oxide (NO), in paediatric patients with otitis media with effusion (OME).
Methods: The levels of TLR, cytokine, and nitric oxide synthase (NOS) mRNAs in middle ear effusion were assessed by real-time polymerase chain reaction in 96 children with OME, 24 prone and 72 not prone to otitis. The level of expression of each mRNA was compared in the otitis-prone and non-otitis-prone groups, in patients with and without bacteria, and by frequency of ventilation tube insertion.
Results: The expression of TLR-1, -2, -4, -5, -6, and -9; IL-6, -8, -10, and -12; IFN-γ; TNF-α; and NOS mRNAs in the effusion fluid of both the otitis-prone and non-otitis-prone groups were measured. The expression levels of TLR-2, -4, -6, and -9 mRNA were significantly lower in the otitis-prone than in the non-otitis-prone group (P<0.05). Although higher levels of TLR, cytokine, and NOS mRNAs were generally observed in culture positive than in culture negative patients, none of these differences was statistically significant. No differences were observed in the expressions relative to the frequencies of ventilation tube insertion.
Interpretation & Conclusions: TLRs, cytokines, and NOS, which act cooperatively in the innate immune response, were closely associated with OME. Decreased expression of TLRs may be associated with increased susceptibility to OME.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868065 | PMC |
Semin Immunopathol
January 2025
Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, Tamilnadu 621007, India. Electronic address:
This study successfully synthesised and characterised composites combining chitosan (CH), carboxymethyl cellulose (CMC), and various flavonoids (Fla). This innovative approach demonstrates the potential for developing functional materials with antioxidant and food preservation properties. The composites CH-Fla-CMC (1-5) was characterised using advanced techniques such as FT-IR, UV-Vis, XRD, SEM, TEM, and TGA, providing robust data on their structural, morphological, and thermal properties.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
University of Colorado, Anschutz Medical Campus School of Medicine| Translational research laboratory of Red Blood Cell Diseases and Hypoxia related illnesses| Cardiovascular Pulmonary Research (CVP) group, Pediatrics. Electronic address:
Lung tissue from human patients and murine models of sickle cell disease pulmonary hypertension (SCD-PH) show perivascular regions with excessive iron accumulation. The iron accumulation arises from chronic hemolysis and extravasation of hemoglobin (Hb) into the lung adventitial spaces, where it is linked to nitric oxide depletion, oxidative stress, inflammation, and tissue hypoxia, which collectively drive SCD-PH. Here, we tested the hypothesis that intrapulmonary delivery of hemopexin (Hpx) to the deep lung is effective at scavenging heme-iron and attenuating the progression of SCD-PH.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:
The integration of photothermal therapy (PTT) and gas therapy (GT) on a nanoplatform shows great potential in cancer treatment. In this paper, a tumor-targeted near-infrared/ultraviolet (NIR/UV) triggered PTT/GT synergistic therapeutic nanoplatform, PB-CD-PLL(NF)-FA, was designed based on Prussian blue (PB) nanoparticles, 5-chloro-2-nitrobenzotrifluoro (NF)-grafted polylysine (PLL(NF)), and folic acid (FA). PB serves as a core to load PLL(NF) through host-guest interaction and can further modify FA.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China. Electronic address:
Nitric oxide (NO) has been highlighted as a key gaseous signaling molecule in the body, playing a central role in various physiological and pathological processes. However, a comprehensive analysis of NO metabolism dynamics in living cells remains a significant challenge. To address this, we have developed and characterized a novel genetically encoded NO fluorescence sensor, GefiNO, to investigate NO metabolism dynamics in living cells and subcellular organelles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!