Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The target of this paper is aimed to discuss the fast and newly techniques in order to assessment the metoclopramide (Mcp) nausea drug in pure form in solid and solution shape with different kind of π-acceptors upon charge transfer interactions. Charge-transfer complexes (CTC) of metoclopramide with picric acid (PA), 2,3-dichloro-5,6-dicyano-p-benzoquinon (DDQ), tetracyanoquinodimethane (TCNQ), m-dinitrobenzene (DNB), p-nitrobenzoic acid (p-NBA) and tetrachloro-p-quinon (p-CL) have been studied spectrophotometrically in absolute methanol at room temperature. The stoichiometries of the complexes were found to be 1:1 ratio by the spectrophotometric titration between metoclopramide and represented π-acceptors. The equilibrium constants, molar extinction coefficient (εCT) and spectroscopic-physical parameters (standard free energy (ΔG°), oscillator strength (ƒ), transition dipole moment (μ), resonance energy (RN) and ionization potential (ID)) of the complexes were determined upon the modified Benesi-Hildebrand equation. The results indicate that the formation constants for the complexes depend on the nature of electron acceptors and configuration of drug donor, and also the spectral studies of the complexes were determined by (infrared, Raman, and (1)H NMR) spectra and X-ray powder diffraction (XRD). The charge-transfer complexes are formed during the interaction of electron-acceptors and electron-donors as result of partial or complete transfer of a negative charge from (D(+)-A(-)).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2013.12.093 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!