Effects of gangliosides on the activity of the plasma membrane Ca2+-ATPase.

Biochim Biophys Acta

Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA.

Published: May 2014

Control of intracellular calcium concentrations ([Ca(2+)]i) is essential for neuronal function, and the plasma membrane Ca(2+)-ATPase (PMCA) is crucial for the maintenance of low [Ca(2+)]i. We previously reported on loss of PMCA activity in brain synaptic membranes during aging. Gangliosides are known to modulate Ca(2+) homeostasis and signal transduction in neurons. In the present study, we observed age-related changes in the ganglioside composition of synaptic plasma membranes. This led us to hypothesize that alterations in ganglioside species might contribute to the age-associated loss of PMCA activity. To probe the relationship between changes in endogenous ganglioside content or composition and PMCA activity in membranes of cortical neurons, we induced depletion of gangliosides by treating neurons with d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (d-PDMP). This caused a marked decrease in the activity of PMCA, which suggested a direct correlation between ganglioside content and PMCA activity. Neurons treated with neuraminidase exhibited an increase in GM1 content, a loss in poly-sialoganglioside content, and a decrease in PMCA activity that was greater than that produced by d-PDMP treatment. Thus, it appeared that poly-sialogangliosides had a stimulatory effect whereas mono-sialogangliosides had the opposite effect. Our observations add support to previous reports of PMCA regulation by gangliosides by demonstrating that manipulations of endogenous ganglioside content and species affect the activity of PMCA in neuronal membranes. Furthermore, our studies suggest that age-associated loss in PMCA activity may result in part from changes in the lipid environment of this Ca(2+) transporter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958931PMC
http://dx.doi.org/10.1016/j.bbamem.2014.01.003DOI Listing

Publication Analysis

Top Keywords

pmca activity
24
loss pmca
12
ganglioside content
12
pmca
10
activity
9
plasma membrane
8
membrane ca2+-atpase
8
age-associated loss
8
endogenous ganglioside
8
activity pmca
8

Similar Publications

A new regulation mechanism for KCNN4, the Ca-dependent K channel, by molecular interactions with the Capump PMCA4b.

J Biol Chem

December 2024

Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France; Laboratory of Excellence for RBC, LABEX GR-Ex, 75015, Paris, France. Electronic address:

KCNN4, a Ca-activated K channel, is involved in various physiological and pathological processes. It is essential for epithelial transport, immune system and other physiological mechanisms but its activation is also involved in cancer pathophysiology as well as red blood cell disorders (RBC). The activation of KCNN4 in RBC leads to loss of KCl and water, a mechanism known as the "Gardos effect" described seventy years ago.

View Article and Find Full Text PDF

Intolerance to exercise is a symptom associated with chronic heart failure (CHF) resulting in SM waste and weakness in humans. The effect of CHF on skeletal muscle (SM) arose from experimental evidence in rat models to explain the underlying mechanism. We investigated SM mechanical and metabolic properties in sham rats and with coronary ligation-induced CHF.

View Article and Find Full Text PDF

Enhanced detection of chronic wasting disease in muscle tissue harvested from infected white-tailed deer employing combined prion amplification assays.

PLoS One

October 2024

Department of Microbiology, Immunology and Pathology, Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America.

Zoonotic transmission of bovine spongiform encephalopathy or mad cow disease, by presumed consumption of infected beef, has increased awareness of the public health risk associated with prion diseases. Chronic wasting disease (CWD) affects moose, elk, and deer, all of which are frequently consumed by humans. Clear evidence of CWD transmission to humans has not been demonstrated, yet, establishing whether CWD prions are present in muscle tissue preferentially consumed by humans is of increasing interest.

View Article and Find Full Text PDF

A role for plasma membrane Ca ATPases in regulation of cellular Ca homeostasis by sphingosine kinase-1.

Pflugers Arch

December 2024

Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany.

Sphingosine-1-phosphate (S1P) is a ubiquitous lipid mediator, acting via specific G-protein-coupled receptors (GPCR) and intracellularly. Previous work has shown that deletion of S1P lyase caused a chronic elevation of cytosolic [Ca] and enhanced Ca storage in mouse embryonic fibroblasts. Here, we studied the role of sphingosine kinase (SphK)-1 in Ca signaling, using two independently generated EA.

View Article and Find Full Text PDF

Validation of prion inactivation processes for medical devices relies on in-vivo experimental protocols. However, bioassays are costly, long (1-2 years) and ethically disputable. Additionally, results obtained with one prion strain - for example, 263K (hamster-adapted strain originating from sheep scrapie) - cannot be easily extrapolated to relevant human prion strains, further questioning the utility of bioassays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!