Automated alignment-based curation of gene models in filamentous fungi.

BMC Bioinformatics

Laboratory of Phytopathology, Wageningen University & Research Centre, P,O, Box 16, 6700 AA Wageningen, The Netherlands.

Published: January 2014

Background: Automated gene-calling is still an error-prone process, particularly for the highly plastic genomes of fungal species. Improvement through quality control and manual curation of gene models is a time-consuming process that requires skilled biologists and is only marginally performed. The wealth of available fungal genomes has not yet been exploited by an automated method that applies quality control of gene models in order to obtain more accurate genome annotations.

Results: We provide a novel method named alignment-based fungal gene prediction (ABFGP) that is particularly suitable for plastic genomes like those of fungi. It can assess gene models on a gene-by-gene basis making use of informant gene loci. Its performance was benchmarked on 6,965 gene models confirmed by full-length unigenes from ten different fungi. 79.4% of all gene models were correctly predicted by ABFGP. It improves the output of ab initio gene prediction software due to a higher sensitivity and precision for all gene model components. Applicability of the method was shown by revisiting the annotations of six different fungi, using gene loci from up to 29 fungal genomes as informants. Between 7,231 and 8,337 genes were assessed by ABFGP and for each genome between 1,724 and 3,505 gene model revisions were proposed. The reliability of the proposed gene models is assessed by an a posteriori introspection procedure of each intron and exon in the multiple gene model alignment. The total number and type of proposed gene model revisions in the six fungal genomes is correlated to the quality of the genome assembly, and to sequencing strategies used in the sequencing centre, highlighting different types of errors in different annotation pipelines. The ABFGP method is particularly successful in discovering sequence errors and/or disruptive mutations causing truncated and erroneous gene models.

Conclusions: The ABFGP method is an accurate and fully automated quality control method for fungal gene catalogues that can be easily implemented into existing annotation pipelines. With the exponential release of new genomes, the ABFGP method will help decreasing the number of gene models that require additional manual curation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898260PMC
http://dx.doi.org/10.1186/1471-2105-15-19DOI Listing

Publication Analysis

Top Keywords

gene models
32
gene
18
gene model
16
quality control
12
fungal genomes
12
abfgp method
12
curation gene
8
models
8
plastic genomes
8
manual curation
8

Similar Publications

Upon exposure to salt stress, calcium signaling in plants activates various stress-responsive genes and proteins along with enhancement in antioxidant defense to eventually regulate the cellular homeostasis for reducing cytosolic sodium levels. The coordination among the calcium signaling molecules and transporters plays a crucial role in salinity tolerance. In the present study, twenty-one diverse indigenous rice genotypes were evaluated for salt tolerance during the early seedling stage, and out of that nine genotypes were further selected for physio-biochemical study.

View Article and Find Full Text PDF

Unveiling the role of PANoptosis-related genes in breast cancer: an integrated study by multi-omics analysis and machine learning algorithms.

Breast Cancer Res Treat

January 2025

Department of Breast Surgery, Thyroid Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, China.

Background: The heterogeneity of breast cancer (BC) necessitates the identification of novel subtypes and prognostic models to enhance patient stratification and treatment strategies. This study aims to identify novel BC subtypes based on PANoptosis-related genes (PRGs) and construct a robust prognostic model to guide individualized treatment strategies.

Methods: The transcriptome data along with clinical data of BC patients were sourced from the TCGA and GEO databases.

View Article and Find Full Text PDF

A gene within a single subclade of NCED genes is triggered in response to both, short- and long-term dehydration treatments, in three model dicot species. During dehydration, some plants can rapidly synthesise the stress hormone abscisic acid (ABA) in leaves within 20 min, triggering the closure of stomata and limiting further water loss. This response is associated with significant transcriptional upregulation of Nine-cis-Epoxycarotenoid Dioxygenase (NCED) genes, which encode the enzyme considered to be rate-limiting in ABA biosynthesis.

View Article and Find Full Text PDF

Purpose: Aromatase inhibitor-associated musculoskeletal symptoms (AIMSS) are the most common adverse effects experienced by breast cancer patients. This scoping review aimed to systematically synthesize the predictors/risk factors and outcomes of AIMSS in patients with early-stage breast cancer.

Methods: A systematic search was conducted in PubMed, Web of Science, EMBASE, CINAHL, and the China National Knowledge Internet (CNKI) from inception to December 2024 following the scoping review framework proposed by Arksey and O'Malley (2005).

View Article and Find Full Text PDF

Background: Multiple Sulfatase Deficiency (MSD) is a rare inherited lysosomal storage disorder characterized by loss of function mutations in the SUMF1 gene that manifests as a severe pediatric neurological disease. There are no available targeted therapies for MSD.

Methods: We engineered a viral vector (AAV9/SUMF1) to deliver working copies of the SUMF1 gene and tested the vector in Sumf1 knock out mice that generally display a median lifespan of 10 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!