Single-file nanochannel persistence lengths from NMR.

Anal Chem

Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.

Published: February 2014

Crystalline solids composed of one-dimensional channels with cross-sectional dimensions below 1 nm represent an intriguing class of materials with important potential applications. A key characteristic for certain applications is the average open channel persistence length, i.e., the ensemble average distance from a channel opening to the first obstruction. This paper introduces an NMR-based methodology to measure this quantity. The protocol is applied to polycrystalline specimens of two different dipeptide nanotubes: l-Ala-l-Val and its retro-analog l-Val-l-Ala. Persistence lengths derived from the NMR measurements are found to be comparable to the typical crystallite dimensions seen in scanning electron microscopy (SEM) images, indicating that the crystals of these AV and VA specimens are essentially hollow with practically no blockages. Applications of the method to an AV sample that has been pulverized in a mortar and pestle showed that the open channel persistence length was reduced from 50 to 6.6 μm, consistent with the crystallite sizes observed in SEM images.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac403868tDOI Listing

Publication Analysis

Top Keywords

persistence lengths
8
open channel
8
channel persistence
8
persistence length
8
sem images
8
single-file nanochannel
4
persistence
4
nanochannel persistence
4
lengths nmr
4
nmr crystalline
4

Similar Publications

Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA base pairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semi-rigid linker relative to the model complex.

View Article and Find Full Text PDF

: The parallel stent graft endovascular aortic repair (PGEVAR) technique is an off-the-shelf option used for elective complex abdominal aortic aneurysm repair with acceptable outcome results, as reported so far. The PGEVAR technique, using chimney or periscope parallel grafts, can also be used for patients with ruptured complex abdominal aortic aneurysms. However, only few data about the mid- to long-term outcomes are available.

View Article and Find Full Text PDF

Background: Cardiac surgery is a major contributor to acute kidney injury (AKI); approximately 22% of patients who undergo cardiac surgery develop AKI, and among them, 2% will require renal replacement therapy (RRT). AKI is also associated with heightened risks of mortality and morbidity, longer intensive care stays, and increased treatment costs. Due to the challenges of treating AKI, prevention through the use of care bundles is suggested as an effective approach.

View Article and Find Full Text PDF

Facial nerve dysfunction (FND) is a well-recognized but poorly documented complication of mandibular distraction osteogenesis (MDO) for Robin sequence (RS). This study aims to document the authors' experiences with FND and identify risk factors associated with this adverse event. A retrospective review of a prospectively gathered database was performed to identify patients with RS who underwent MDO at the authors' institution from March 2016 to June 2023.

View Article and Find Full Text PDF

The sodium phosphate cotransporter-2A (NPT2A) mediates basal and parathyroid hormone (PTH)- and fibroblast growth factor-23 (FGF23)-regulated phosphate transport in proximal tubule cells of the kidney. Both basal and hormone-sensitive transport require sodium hydrogen exchanger regulatory factor-1 (NHERF1), a scaffold protein with tandem PDZ domains, PDZ1 and PDZ2. NPT2A binds to PDZ1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!