Although, in general, nanogels present a good biocompatibility and are able to mimic biological tissues, their unstability and uncontrollable release properties still limit their biomedical applications. In this study, a simple approach was used to develop dual-cross-linked dendrimer/alginate nanogels (AG/G5), using CaCl2 as cross-linker and amine-terminated generation 5 dendrimer (G5) as a cocrosslinker, through an emulsion method. Via their strong electrostatic interactions with anionic AG, together with cross-linker Ca(2+), G5 dendrimers can be used to mediate the formation of more compact structural nanogels with smaller size (433 ± 17 nm) than that (873 ± 116 nm) of the Ca(2+)-cross-linked AG nanogels in the absence of G5. Under physiological (pH 7.4) and acidic (pH 5.5) conditions, the sizes of Ca(2+)-cross-linked AG nanogels gradually decrease probably because of their degradation, while dual-cross-linked AG/G5 nanogels maintain a relatively more stable structure. Furthermore, the AG/G5 nanogels effectively encapsulate the anticancer drug doxorubicin (Dox) with a loading capacity 3 times higher than that of AG nanogels. The AG/G5 nanogels were able to release Dox in a sustained way, avoiding the burst release observed for AG nanogels. In vitro studies show that the AG/G5-Dox NGs were effectively taken up by CAL-72 cells (a human osteosarcoma cell line) and maintain the anticancer cytotoxicity levels of free Dox. Interestingly, G5 labeled with a fluorescent marker can be integrated into the nanogels and be used to track the nanogels inside cells by fluorescence microscopy. These findings demonstrate that AG/G5 nanogels may serve as a general platform for therapeutic delivery and/or cell imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm401400r | DOI Listing |
ACS Biomater Sci Eng
February 2016
Nanobiotechnology Laboratory, Centre for Nanotechnology, and Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
Proper choice and design of nanocarriers is imperative to achieve the desired therapeutic benefits. Herein, we report a facile methodology for preparation of chemically cross-linked AG-G5 hybrid nanogels of alginate (AG) and G5.0 poly(amidoamine) (PAMAM) dendrimer via carbodiimide chemistry.
View Article and Find Full Text PDFBiomacromolecules
February 2014
CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira , Campus Universitário da Penteada, 9020-105 Funchal, Portugal.
Although, in general, nanogels present a good biocompatibility and are able to mimic biological tissues, their unstability and uncontrollable release properties still limit their biomedical applications. In this study, a simple approach was used to develop dual-cross-linked dendrimer/alginate nanogels (AG/G5), using CaCl2 as cross-linker and amine-terminated generation 5 dendrimer (G5) as a cocrosslinker, through an emulsion method. Via their strong electrostatic interactions with anionic AG, together with cross-linker Ca(2+), G5 dendrimers can be used to mediate the formation of more compact structural nanogels with smaller size (433 ± 17 nm) than that (873 ± 116 nm) of the Ca(2+)-cross-linked AG nanogels in the absence of G5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!