Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Synthesized PbMoO4 from H2MoO4 and Pb(NO3)2 with microwaves was compared, in terms of its photocatalytic activity as catalyzer for decomposing rhodamine B (RhB), against samples prepared by hydrothermal and sonochemical methods from the same precursors. Microwave synthesis lasted 20 minutes; hydrothermal, 10 minutes and sonochemical method, 1 hour. Xrays diffraction patterns show that PbMoO4 prepared by these three routes is compounded by the same phase. It is found that microwave synthesized PbMoO4 particles are rounder, in an intermediate size (250 nm), compared to sonochemical (100 nm) and hydrothermal (500 nm) routes; microwave particles also exhibit higher photocatalytic activity for degradation of RhB under a xenon lamp. This difference is not explicable in terms of surface area measurements, but could be explained by UV Light scattering by the rounder particles produced by means of the microwave processing, which are about one half size compared to the wavelength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08327823.2012.11689833 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!