Detecting rare gene transfer events in bacterial populations.

Front Microbiol

Department of Biostatistics, Yale University New Haven, CT, USA ; Program in Computational Biology and Bioinformatics, Yale University New Haven, CT, USA ; Program in Microbiology, Yale University New Haven, CT, USA.

Published: January 2014

Horizontal gene transfer (HGT) enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3882822PMC
http://dx.doi.org/10.3389/fmicb.2013.00415DOI Listing

Publication Analysis

Top Keywords

hgt events
24
gene transfer
12
bacterial populations
12
hgt
10
events
8
events bacterial
8
host fitness
8
events occurring
8
population sizes
8
population genetic
8

Similar Publications

CRISPR-Cas spacer acquisition is a rare event in human gut microbiome.

Cell Genom

December 2024

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA. Electronic address:

Host-parasite relationships drive the evolution of both parties. In microbe-phage dynamics, CRISPR functions as an adaptive defense mechanism, updating immunity via spacer acquisition. Here, we investigated these interactions within the human gut microbiome, uncovering low frequencies of spacer acquisition at an average rate of one spacer every ∼2.

View Article and Find Full Text PDF

Microbial communities that maintain symbiotic relationships with animals evolve by adapting to the specific environmental niche provided by their host, yet understanding their patterns of speciation remains challenging. Whether bacterial speciation occurs primarily through allopatric or sympatric processes remains an open question. In addition, patterns of DNA transfers, which are pervasive in bacteria, are more constrained in a closed host-gut system.

View Article and Find Full Text PDF
Article Synopsis
  • * The exonuclease SbcB unexpectedly promotes NT by acting after DNA uptake but before the recombination process, without relying on its typical DNA-degrading function.
  • * This research enhances our understanding of how genes, including those related to antibiotic resistance, spread among bacteria and reveals a new role for SbcB in supporting homologous recombination during NT.
View Article and Find Full Text PDF

Horizontal gene transfer (HGT) is a fundamental evolutionary process that plays a key role in bacterial evolution. The likelihood of a successful transfer event is expected to depend on the precise balance of costs and benefits resulting from pathway acquisition. Most experimental analyses of HGT have focused on phenotypes that have large fitness benefits under appropriate selective conditions, such as antibiotic resistance.

View Article and Find Full Text PDF

Antimicrobial resistance genes (ARGs) and virulence genes (VGs) have been widely reported in Salmonella which are major foodborne pathogens from poultry. This study assessed the replicon typing and conjugative ability of plasmids from poultry-derived Salmonella as well as ARGs and VGs carried by these plasmids using an in silico approach. Both PlasmidFinder 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!