Ion transporters are the molecular basis for ion homeostasis of the cell and the whole organism. The anion exchanger pendrin is only one of a number of examples where a complete or partial loss of function and/or deregulation of expression of ion transporters may lead or contribute to pathological conditions in humans. A complete understanding of the function of ion transporters in health and disease may pave the way for the identification of new and focused therapeutic approaches. Exchange of knowledge and connectivity between the experts in the feld of transport physiology is essential in facing these challenging tasks. The Lake Cumberland Biological Transport Group and the Pendrin Consortium are examples of scientific forums where investigators combine their efforts towards a better understanding of molecular pathophysiology of ion transport. This issue discusses the versatility of ion transporters involved in the regulation of cellular volume and other functions, such as the solute carrier (SLC) 12A gene family members SLC12A4-7, encoding the Na(+)-independent cation-chloride cotransporters commonly known as the K(+)-Cl(-) cotransporters KCC1-4, and the betaine/γ-aminobutyric acid transport system (BGT1, SLC6A12), just to name a few. The issue further addresses the pathophysiology of intestinal and respiratory epithelia and related therapeutic tools and techniques to investigate interactions between proteins and proteins and small compounds. Finally, the current knowledge and new findings on the expression, regulation and function of pendrin (SLC26A4) in the inner ear, kidney, airways and blood platelets are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000356620 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!