A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rho-kinase contributes to pressure-induced constriction of renal microvessels. | LitMetric

Renal afferent arterioles (AFF) regulate glomerular capillary pressure through two main mechanisms: the myogenic response (MYO) and tubuloglomerular feedback (TGF). Because Rho-kinase and nitric oxide synthase (NOS) are established factors that modulate vascular tone, we examined the role of these factors in pressure-induced AFF tone in Wistar-Kyoto rats and in spontaneously hypertensive rats (SHR) using an intravital CCD camera. Elevated renal perfusion pressure elicited marked AFF constriction that was partially inhibited by gadolinium, furosemide and fasudil, which inhibit MYO, TGF and Rho-kinase, respectively; however, this AFF constriction was completely blocked by combined treatment with fasudil+gadolinium or fasudil+furosemide. S-methyl-L-thiocitrulline (SMTC) partially reversed the fasudil-induced inhibition of TGF-mediated, but not that of MYO-mediated, AFF constriction. In SHR, the pressure-induced AFF response was enhanced, and MYO- and TGF-induced constriction were exaggerated. In the presence of gadolinium, SMTC partially mitigated the fasudil-induced inhibition of TGF-mediated AFF constriction. Immunoblot analyses demonstrated that both Rho-kinase activity and neuronal NOS were augmented in SHR kidneys. In conclusion, Rho-kinase contributes to MYO- and TGF-mediated AFF responses, and these responses are enhanced in SHR. Furthermore, neuronal NOS-induced nitric oxide modulates the TGF mechanism. This mechanism constitutes a target for Rho-kinase in TGF-mediated AFF constriction.

Download full-text PDF

Source
http://dx.doi.org/10.2302/kjm.2013-0001-oaDOI Listing

Publication Analysis

Top Keywords

aff constriction
20
tgf-mediated aff
12
aff
9
rho-kinase contributes
8
tgf rho-kinase
8
nitric oxide
8
pressure-induced aff
8
smtc partially
8
fasudil-induced inhibition
8
inhibition tgf-mediated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!