Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Renal afferent arterioles (AFF) regulate glomerular capillary pressure through two main mechanisms: the myogenic response (MYO) and tubuloglomerular feedback (TGF). Because Rho-kinase and nitric oxide synthase (NOS) are established factors that modulate vascular tone, we examined the role of these factors in pressure-induced AFF tone in Wistar-Kyoto rats and in spontaneously hypertensive rats (SHR) using an intravital CCD camera. Elevated renal perfusion pressure elicited marked AFF constriction that was partially inhibited by gadolinium, furosemide and fasudil, which inhibit MYO, TGF and Rho-kinase, respectively; however, this AFF constriction was completely blocked by combined treatment with fasudil+gadolinium or fasudil+furosemide. S-methyl-L-thiocitrulline (SMTC) partially reversed the fasudil-induced inhibition of TGF-mediated, but not that of MYO-mediated, AFF constriction. In SHR, the pressure-induced AFF response was enhanced, and MYO- and TGF-induced constriction were exaggerated. In the presence of gadolinium, SMTC partially mitigated the fasudil-induced inhibition of TGF-mediated AFF constriction. Immunoblot analyses demonstrated that both Rho-kinase activity and neuronal NOS were augmented in SHR kidneys. In conclusion, Rho-kinase contributes to MYO- and TGF-mediated AFF responses, and these responses are enhanced in SHR. Furthermore, neuronal NOS-induced nitric oxide modulates the TGF mechanism. This mechanism constitutes a target for Rho-kinase in TGF-mediated AFF constriction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2302/kjm.2013-0001-oa | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!