Identification of shikimate kinase inhibitors among anti-Mycobacterium tuberculosis compounds by LC-MS.

Tuberculosis (Edinb)

Department of Pharmacal Sciences, Harrison School of Pharmacy, 4306 Walker Building, Auburn University, Auburn, AL 36849, USA. Electronic address:

Published: March 2014

Increasing drug resistance has challenged the control and treatment of tuberculosis, sparking recent interest in finding new antitubercular agents with different chemical scaffolds and mechanisms of action. Mycobacterium tuberculosis shikimate kinase (MtSK), an enzyme present in the shikimate pathway in bacteria, is essential for the survival of the tubercle bacillus, representing an ideal target for therapeutic intervention given its absence in mammals. In this study, a small library of 404 synthetic antimycobacterial compounds identified and supplied through the NIH Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF) high throughput screening program against whole cell M. tuberculosis H37Rv was further screened using a mass spectrometry-based functional assay in order to identify a potential enzymatic target. Fourteen compounds containing an oxadiazole-amide or a 2-aminobenzothiazole core scaffold showed MtSK inhibitory activity at 50 μM, with the lowest giving an IC50 of 1.94 μM. Induced fit docking studies suggested that the scaffolds shared by these compounds fit well in the shikimate binding pocket of MtSK. In summary, we report new early discovery stage lead scaffolds targeting the essential protein MtSK that can be further pursued in a rational drug design program for the discovery of more selective antitubercular drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tube.2013.12.004DOI Listing

Publication Analysis

Top Keywords

shikimate kinase
8
identification shikimate
4
kinase inhibitors
4
inhibitors anti-mycobacterium
4
tuberculosis
4
anti-mycobacterium tuberculosis
4
compounds
4
tuberculosis compounds
4
compounds lc-ms
4
lc-ms increasing
4

Similar Publications

Gallic Acid: A Potent Metabolite Targeting Shikimate Kinase in .

Metabolites

December 2024

Pharmacognosy and Pharmaceutical Chemistry Department, Faculty of Pharmacy, Taibah University, Al Madinah Al Munawarah 30001, Saudi Arabia.

is a highly multidrug-resistant pathogen resistant to almost all classes of antibiotics; new therapeutic strategies against this infectious agent are urgently needed. Shikimate kinase is an enzyme belonging to the shikimate pathway and has become a potential target for drug development. This work describes the search for Food and Drug Administration (FDA)-approved drugs and natural compounds, including gallic acid, that could be repurposed as selective shikimate kinase inhibitors by integrated computational and experimental approaches.

View Article and Find Full Text PDF

Chloroplasts are not only places for photosynthesis, but also participate in plant immunity and are important targets of pathogens. Pathogens secrete chloroplast-targeted proteins (CTPs) that disrupt host immunity and promote infection. (Lib.

View Article and Find Full Text PDF

Tuberculosis (TB) is the foremost cause of infectious fatality globally. The primary global challenge in combatting TB lies in addressing the emergence of drug-resistant variants of the disease. However, the number of newly approved agents for treating TB has remained remarkably low over recent decades.

View Article and Find Full Text PDF

Engineering cascade biocatalysis in whole cells for syringic acid bioproduction.

Microb Cell Fact

June 2024

School of Life Science, Beijing Institute of Technology, No 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China.

Background: Syringic acid (SA) is a high-value natural compound with diverse biological activities and wide applications, commonly found in fruits, vegetables, and herbs. SA is primarily produced through chemical synthesis, nonetheless, these chemical methods have many drawbacks, such as considerable equipment requirements, harsh reaction conditions, expensive catalysts, and numerous by-products. Therefore, in this study, a novel biotransformation route for SA production was designed and developed by using engineered whole cells.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is one of the biggest threats in modern times. It was estimated that in 2019, 1.27 million deaths occurred around the globe due to AMR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!