Objectives: Development of a novel drug candidate with improved activity against influenza virus neuraminidase (NA) compared with currently available therapeutics.
Methods: Synthesized compounds were evaluated in vitro and in vivo. Three-dimensional molecular docking was successfully applied to classify compounds within the series by inhibitory potency. Stability was investigated in blood samples and in animal models. A pharmacokinetic study was performed in dogs and rats using peroral and intravenous administration.
Results: A novel highly potent drug candidate [(3R,4R,5S)-4-(2,2-difluoroacetylamino)-5-amino-3-(1-ethyl-propoxy)-cyclohex-1-enecarboxylic acid; AV5027] and its prodrug ethyl ester (AV5075S) were synthesized and tested. AV5027 and AV5075S exhibit picomolar activity against influenza virus NA. AV5075S inhibited NA in a model of pneumonia using mouse-adapted A/Aichi/2/68 (H3N2) virus significantly more strongly than oseltamivir phosphate. A general metabolic pathway was constructed for the parent compound based on experimental results and theoretical analyses.
Conclusions: AV5075S can be reasonably regarded as a novel 'next in class' oral drug candidate for the treatment of influenza.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jac/dkt507 | DOI Listing |
Elife
January 2025
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding.
View Article and Find Full Text PDFChemistry
January 2025
Griffith University - Gold Coast Campus, Institute for Biomedicine and Glycomics, Parklands Drive, 4222, Southport, AUSTRALIA.
3-Fluoroneuraminosyl fluorides are invaluable probes for studying the catalytic mechanism of sialidases (neuraminidases), and as sialidase inhibitors. Significantly, when a C-3 equatorial fluorine is installed on a C-4 functionalised N-acylneuraminic acid (Neu)-based template, the compounds are potent and selective inhibitors of both influenza and parainfluenza sialidases, and of virus replication. Typically, the reported syntheses of 3-fluoroneuraminosyl fluorides involve either an enzymatic or a chemical synthesis that have uncontrolled stereoselectivity in the introduction of fluorine at C-3 of Neu and consequently yield a mixture of C-3 ax and C-3 eq fluoro derivatives.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.
View Article and Find Full Text PDFFront Parasitol
December 2024
Department of Biomedical Science, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.
Nematode parasitic infections continue to be a major health problem for humans and animals. Drug resistance to currently available treatments only worsen the problem. Drug discovery is expensive and time-consuming, making drug repurposing an enticing option.
View Article and Find Full Text PDFFront Parasitol
March 2024
Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
Flatworms depend on stem cells for continued tissue growth and renewal during their life cycles, making these cells valuable drug targets. While neoblasts are extensively characterized in the free-living planarian , and similar stem cells have been characterized in the trematode , their identification and characterization in cestodes is just emerging. Since stem cells are generally affected by irradiation, in this work we used this experimental approach to study the stem cells of the model cestode .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!