Modern microbial mats are highly complex and dynamic ecosystems. Diffusive equilibration in thin films (DET) and diffusive gradients in thin films (DGT) samplers were deployed in a modern smooth microbial mat from Shark Bay in order to observe, for the first time, two-dimensional distributions of porewater solutes during day and night time. Two-dimensional sulfide and alkalinity distributions revealed a strong spatial heterogeneity and a minor contribution of sulfide to alkalinity. Phosphate distributions were also very heterogeneous, while iron(II) distributions were quite similar during day and night with a few hotspots of mobilization. Lipid biomarkers from the three successive layers of the mat were also analysed in order to characterize the microbial communities regulating analyte distributions. The major hydrocarbon products detected in all layers included n-alkanes and isoprenoids, whilst other important biomarkers included hopanoids. Phospholipid fatty acid profiles revealed a decrease in cyanobacterial markers with depth, whereas sulfate-reducing bacteria markers increased in abundance in accordance with rising sulfide concentrations with depth. Despite the general depth trends in community structure and physiochemical conditions within the mat, two-dimensional solute distributions showed considerable small-scale lateral variability, indicating that the distributions and activities of the microbial communities regulating these solute distributions were equally heterogeneous and complex.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.12378DOI Listing

Publication Analysis

Top Keywords

microbial communities
12
distributions
9
shark bay
8
lipid biomarkers
8
two-dimensional distributions
8
distributions porewater
8
porewater solutes
8
thin films
8
time two-dimensional
8
day night
8

Similar Publications

Enhancing nitrogen (N) fixation in rice plants can reduce N fertilizer application and contribute to sustainable rice production, particularly under low-N conditions. However, detailed microbial and metabolic characterization of N fixation in rice stems, unlike in the well-studied roots, has not been investigated. Therefore, the aim of this study was to determine the active N-fixing sites, their diazotroph communities, and the usability of possible carbon sources in stems compared with roots.

View Article and Find Full Text PDF

Soil bacteria are prolific producers of a myriad of biologically active secondary metabolites. These natural products play key roles in modern society, finding use as anti-cancer agents, as food additives, and as alternatives to chemical pesticides. As for their original role in interbacterial communication, secondary metabolites have been extensively studied under in vitro conditions, revealing many roles including antagonism, effects on motility, niche colonization, signaling, and cellular differentiation.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) represents an increasing public health concern. The underlying pathophysiological mechanisms of NAFLD remains unclear, and as a result, there is currently no specific therapy for this condition. However, recent studies focus on extracellular vesicles (EVs) as a novelty in their role in cellular communication.

View Article and Find Full Text PDF

Variation and assembly mechanisms of skin and cave environmental fungal communities during hibernation periods.

Microbiol Spectr

January 2025

Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.

Animal skin acts as the barrier against invasion by pathogens and microbial colonizers. Environmental microbiota plays a significant role in shaping these microbial communities, which, in turn, have profound implications for host health. Previous research has focused on characterizing microorganisms on bats' skin and in their roosting environments, particularly bacterial communities.

View Article and Find Full Text PDF

Microbiota dysfunction induces intestinal disorders and neurological diseases. Mannuronate oligosaccharides (MAOS), a kind of alginate oligosaccharide (AOS), specifically exert efficacy in shaping gut microbiota and relieving cognitive impairment. However, the key regulatory factors involved, such as the specific strains and metabolites as well as their regulatory mechanisms, remain unclear at present.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!