DDQ-mediated oxidative coupling: an approach to 2,3-dicyanofuran (thiophene).

J Org Chem

Shanghai Key Laboratory of New Drug Design & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

Published: February 2014

A facile oxidative coupling of α-carbonyl radicals to 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) for the synthesis of 2,3-dicyanofurans and thiophenes starting from readily available β-diketones, simple ketones, and β-keto thioamides in up to 95% yield in one step was developed. Mechanistic investigations revealed that a radical process could be involved in this transformation, and a water promoted C-C bond cleavage pathway is proposed for the formation of 2,3-dicyanofurans and thiophenes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo4026034DOI Listing

Publication Analysis

Top Keywords

oxidative coupling
8
23-dicyanofurans thiophenes
8
ddq-mediated oxidative
4
coupling approach
4
approach 23-dicyanofuran
4
23-dicyanofuran thiophene
4
thiophene facile
4
facile oxidative
4
coupling α-carbonyl
4
α-carbonyl radicals
4

Similar Publications

Preparation, Modification, Quantitation, and Dentin Biomodification Activity of Selectively Enriched Proanthocyanidins.

J Nat Prod

January 2025

Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States.

To date, quantitative analysis of proanthocyanidin (PAC) containing materials including plant extracts and fractions depends on colorimetric assays or phloroglucinolysis/thiolysis combined with UV-HPLC analysis. Such assays are of limited accuracy, particularly lack specificity, require extensive sample preparation and degradation, and need appropriate physical reference standards. To address this analytical challenge and toward our broader goal of developing new plant-sourced biomaterials that chemically and mechanically modulate the properties of dental tissue for clinical interventions, we have characterized 12 different PAC DESIGNER (Depletion and Enrichment of Select Ingredients Generating Normalized Extract Resources) materials.

View Article and Find Full Text PDF

Diabetic wounds present multiple functional impairments, including neurovascular dysregulation, oxidative imbalance, and immune dysfunction, making wound healing particularly challenging, while traditional therapeutical strategies fail to address these complex issues effectively. Herein, we propose a strategy utilizing dual-layer microneedles to deliver therapeutic gases by modulating neurovascular coupling and immune functions for diabetic wound treatment. The microneedle can respond to reactive oxygen species (ROS) in the diabetic microenvironment and subsequently generate oxygen (O) and nitric oxide (NO).

View Article and Find Full Text PDF

Hydroxy radical (•OH) is a prestigious oxidant that allows the cleavage of strong chemical bonds of methane but is untamed, leading to over-oxidation of methane and waste of oxidants, especially at high methane conversion. Here, we managed to buffer •OH in an aqueous solution of photo-irradiated Fe3+, where •OH almost participates in methane oxidation. Due to the interaction between Fe3+ and SO42-, the electron transfer from OH- to excited-state Fe3+ for •OH generation is retarded, while excessive •OH is consumed by generated Fe2+ to restore Fe3+.

View Article and Find Full Text PDF

Diabetic Retinopathy (DR), a leading complication of diabetes mellitus, has long been considered as a microvascular disease of the retina. However, recent evidence suggests that DR is a neurovascular disease, characterized by the degeneration of retinal neural tissue and microvascular abnormalities encompassing ischemia, neovascularization, and blood-retinal barrier breakdown, ultimately leading to blindness. The intricate relationship between the retina and vascular cells constitutes a neurovascular unit, a multi-cellular framework of retinal neurons, glial cells, immune cells, and vascular cells, which facilitates neurovascular coupling, linking neuronal activity to blood flow.

View Article and Find Full Text PDF

Chronic Obstructive Pulmonary Disease (COPD) is a poorly reversible respiratory disorder distinguished by dyspnea, cough, expectoration and exacerbations due to abnormality of airways or emphysema. In this review, we consider the therapeutic potential of targeting Mammalian target of Rapamycin (mTOR) for treating COPD. The mTOR is a highly conserved serine-threonine protein kinase that integrates signals from growth factors and nutrients to control protein synthesis, lipid biogenesis and metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!