A facile oxidative coupling of α-carbonyl radicals to 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) for the synthesis of 2,3-dicyanofurans and thiophenes starting from readily available β-diketones, simple ketones, and β-keto thioamides in up to 95% yield in one step was developed. Mechanistic investigations revealed that a radical process could be involved in this transformation, and a water promoted C-C bond cleavage pathway is proposed for the formation of 2,3-dicyanofurans and thiophenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo4026034 | DOI Listing |
J Nat Prod
January 2025
Pharmacognosy Institute and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois 60612, United States.
To date, quantitative analysis of proanthocyanidin (PAC) containing materials including plant extracts and fractions depends on colorimetric assays or phloroglucinolysis/thiolysis combined with UV-HPLC analysis. Such assays are of limited accuracy, particularly lack specificity, require extensive sample preparation and degradation, and need appropriate physical reference standards. To address this analytical challenge and toward our broader goal of developing new plant-sourced biomaterials that chemically and mechanically modulate the properties of dental tissue for clinical interventions, we have characterized 12 different PAC DESIGNER (Depletion and Enrichment of Select Ingredients Generating Normalized Extract Resources) materials.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
Diabetic wounds present multiple functional impairments, including neurovascular dysregulation, oxidative imbalance, and immune dysfunction, making wound healing particularly challenging, while traditional therapeutical strategies fail to address these complex issues effectively. Herein, we propose a strategy utilizing dual-layer microneedles to deliver therapeutic gases by modulating neurovascular coupling and immune functions for diabetic wound treatment. The microneedle can respond to reactive oxygen species (ROS) in the diabetic microenvironment and subsequently generate oxygen (O) and nitric oxide (NO).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Chinese Academy of Sciences Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis and Dalian National Laboratory for Clean Energy, CHINA.
Hydroxy radical (•OH) is a prestigious oxidant that allows the cleavage of strong chemical bonds of methane but is untamed, leading to over-oxidation of methane and waste of oxidants, especially at high methane conversion. Here, we managed to buffer •OH in an aqueous solution of photo-irradiated Fe3+, where •OH almost participates in methane oxidation. Due to the interaction between Fe3+ and SO42-, the electron transfer from OH- to excited-state Fe3+ for •OH generation is retarded, while excessive •OH is consumed by generated Fe2+ to restore Fe3+.
View Article and Find Full Text PDFExp Eye Res
January 2025
Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India. Electronic address:
Diabetic Retinopathy (DR), a leading complication of diabetes mellitus, has long been considered as a microvascular disease of the retina. However, recent evidence suggests that DR is a neurovascular disease, characterized by the degeneration of retinal neural tissue and microvascular abnormalities encompassing ischemia, neovascularization, and blood-retinal barrier breakdown, ultimately leading to blindness. The intricate relationship between the retina and vascular cells constitutes a neurovascular unit, a multi-cellular framework of retinal neurons, glial cells, immune cells, and vascular cells, which facilitates neurovascular coupling, linking neuronal activity to blood flow.
View Article and Find Full Text PDFCytokine Growth Factor Rev
January 2025
Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India. Electronic address:
Chronic Obstructive Pulmonary Disease (COPD) is a poorly reversible respiratory disorder distinguished by dyspnea, cough, expectoration and exacerbations due to abnormality of airways or emphysema. In this review, we consider the therapeutic potential of targeting Mammalian target of Rapamycin (mTOR) for treating COPD. The mTOR is a highly conserved serine-threonine protein kinase that integrates signals from growth factors and nutrients to control protein synthesis, lipid biogenesis and metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!