Glaciers harbour diverse microorganisms, which upon ice melt can be released downstream. In glacier-fed streams microorganisms can attach to stones or sediments to form benthic biofilms. We used 454-pyrosequencing to explore the bulk (16S rDNA) and putatively active (16S rRNA) microbial communities of stone and sediment biofilms across 26 glacier-fed streams. We found differences in community composition between bulk and active communities among streams and a stronger congruence between biofilm types. Relative abundances of rRNA and rDNA were positively correlated across different taxa and taxonomic levels, but at lower taxonomic levels, the higher abundance in either the active or the bulk communities became more apparent. Here, environmental variables played a minor role in structuring active communities. However, we found a large number of rare taxa with higher relative abundances in rRNA compared with rDNA. This suggests that rare taxa contribute disproportionately to microbial community dynamics in glacier-fed streams. Our findings propose that high community turnover, where taxa repeatedly enter and leave the 'seed bank', contributes to the maintenance of microbial biodiversity in harsh ecosystems with continuous environmental perturbations, such as glacier-fed streams.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.12392DOI Listing

Publication Analysis

Top Keywords

glacier-fed streams
20
taxa contribute
8
community dynamics
8
benthic biofilms
8
biofilms glacier-fed
8
active communities
8
relative abundances
8
abundances rrna
8
taxonomic levels
8
rare taxa
8

Similar Publications

Article Synopsis
  • Glacier-fed streams (GFS) are extreme aquatic ecosystems with little nutrients and fluctuating environments, where microorganisms predominantly form biofilms.
  • Researchers analyzed 156 metagenomes from various mountain ranges, revealing thousands of metagenome-assembled genomes (MAGs) of prokaryotes, algae, fungi, and viruses that demonstrate complex biotic interactions in these biofilms.
  • The study found that as glaciers shrink, biofilms transition from using inorganic energy sources to relying more on heterotrophy as algal biomass increases, highlighting the adaptability of microbial life in these unique ecosystems amid climate change.
View Article and Find Full Text PDF

Unlabelled: Glacier-fed streams are permanently cold, ultra-oligotrophic, and physically unstable environments, yet microbial life thrives in benthic biofilm communities. Within biofilms, microorganisms rely on secondary metabolites for communication and competition. However, the diversity and genetic potential of secondary metabolites in glacier-fed stream biofilms remain poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • The rapid melting of mountain glaciers, a sign of climate change, threatens unique ecosystems known as glacier-fed streams (GFSs), which are primarily dominated by microbial life.
  • Using advanced techniques like metabarcoding and metagenomics, researchers conducted a detailed study of the bacterial microbiome in 152 GFSs across major mountain ranges, revealing distinct taxonomic and functional differences compared to other cryospheric microbiomes.
  • The findings highlight the importance of geographic isolation and environmental factors in shaping bacterial diversity, underscoring the urgent need for further research due to the risks posed by climate change to this unique ecosystem.
View Article and Find Full Text PDF

Experimental evidence on the impact of climate-induced hydrological and thermal variations on glacier-fed stream biofilms.

FEMS Microbiol Ecol

January 2025

River Ecosystems Laboratory, Alpine and Polar Environmental Research Centre (ALPOLE), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne, Sion, 1950, Switzerland.

Climate change is predicted to alter the hydrological and thermal regimes of high-mountain streams, particularly glacier-fed streams. However, relatively little is known about how these environmental changes impact the microbial communities in glacier-fed streams. Here, we operated streamside flume mesocosms in the Swiss Alps, where benthic biofilms were grown under treatments simulating climate change.

View Article and Find Full Text PDF

(Dis)connecting the Globe Through Water-Driven Ecological and Biogeochemical Corridors in the Polar-Alpine Biome.

Glob Chang Biol

December 2024

Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain.

Global change is causing the melting of ice masses, permafrost thawing, and the shrinking of glaciers, thereby reshaping nature's rhythms. Longer thaw phases and more frequent dry periods are transforming water-driven transitional ecosystems (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!