While conventional anticancer therapies, including surgical resection, radiotherapy, and/or chemotherapy, are relatively efficient at eliminating primary tumors, these treatment modalities are largely ineffective against metastases. At least in part, this reflects the rather inefficient delivery of conventional anticancer agents to metastatic lesions. We have recently demonstrated that myeloid-derived suppressor cells (MDSCs) can be used as cellular missiles to selectively deliver a radioisotope-coupled attenuated variant of to both primary and metastatic neoplastic lesions in mice with pancreatic cancer. This novel immunotherapeutic intervention robustly inhibited tumor growth while promoting a dramatic decrease in the number of metastases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890360PMC
http://dx.doi.org/10.4161/onci.26967DOI Listing

Publication Analysis

Top Keywords

myeloid-derived suppressor
8
suppressor cells
8
cellular missiles
8
conventional anticancer
8
cells cellular
4
missiles target
4
target tumors
4
tumors conventional
4
anticancer therapies
4
therapies including
4

Similar Publications

Myeloid-derived suppressor cells (MDSCs) are expanded in cancer patients, have an intrinsic immunosuppressive function, and thus may play a role in resistance to immunotherapy. Ulceration of the melanoma primary is associated with more aggressive disease and is an independent prognostic factor for melanoma-specific survival. However, the underlying factors contributing to this more aggressive phenotype are not completely understood.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a highly malignant and aggressive gastrointestinal tumor. Due to its weak immunogenicity and limited immune, cell infiltration lead to ineffective clinical outcomes. Therefore, to improve the current prophylaxis and treatment scheme, offering a favorable strategy efficient against CRC is urgently needed.

View Article and Find Full Text PDF

Background: Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC), faces resistance issues, partly due to myeloid-derived suppressor cells (MDSCs) that enhance immunosuppression in the tumor microenvironment (TME).

Methods: Various murine HCC cell lines and MDSCs were used in a series of in vitro and in vivo experiments. These included subcutaneous tumor models, cell viability assays, flow cytometry, immunohistochemistry, and RNA sequencing.

View Article and Find Full Text PDF

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immature myeloid cells playing a critical role in immune suppression. In vitro-generated MDSCs are a convenient tool to study the properties of tumour-associated MDSCs. Here, we compared six protocols for in vitro generation of functional mouse MDSCs from bone marrow progenitors.

View Article and Find Full Text PDF

Reduced dependence on antirejection agents, improved long-term allograft survival, and induction of operational tolerance remain major unmet needs in organ transplantation due to the limitations of current immunosuppressive therapies. To address this challenge, investigators are exploring the therapeutic potential of adoptively transferred host- or donor-derived regulatory immune cells. Extracellular vesicles of endosomal origin (exosomes) secreted by these cells seem to be important contributors to their immunoregulatory properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!