In the present conceptual review several theoretical and empirical sources of information were integrated, and a hybrid model of the neural representation of complex mental processing in the human brain was proposed. Based on empirical evidence for strategy-related and inter-individually different task-related brain activation networks, and further based on empirical evidence for a remarkable overlap of fronto-parietal activation networks across different complex mental processes, it was concluded by the author that there might be innate and modular organized neuro-developmental starting regions, for example, in intra-parietal, and both medial and middle frontal brain regions, from which the neural organization of different kinds of complex mental processes emerge differently during individually shaped learning histories. Thus, the here proposed model provides a hybrid of both massive modular and holistic concepts of idiosyncratic brain physiological elaboration of complex mental processing. It is further concluded that 3-D information, obtained by respective methodological approaches, are not appropriate to identify the non-linear spatio-temporal dynamics of complex mental process-related brain activity in a sufficient way. How different participating network parts communicate with each other seems to be an indispensable aspect, which has to be considered in particular to improve our understanding of the neural organization of complex cognition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595429 | PMC |
http://dx.doi.org/10.1007/s11571-012-9220-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!