The Amino Acid Transporters of the Glutamate/GABA-Glutamine Cycle and Their Impact on Insulin and Glucagon Secretion.

Front Endocrinol (Lausanne)

Institute of Basic Medical Sciences, University of Oslo, Oslo , Norway ; The Biotechnology Centre of Oslo, University of Oslo, Oslo , Norway.

Published: December 2013

Intercellular communication is pivotal in optimizing and synchronizing cellular responses to keep homeostasis and to respond adequately to external stimuli. In the central nervous system (CNS), glutamatergic and GABAergic signals are postulated to be dependent on the glutamate/GABA-glutamine cycle for vesicular loading of neurotransmitters, for inactivating the signal and for the replenishment of the neurotransmitters. Islets of Langerhans release the hormones insulin and glucagon, but share similarities with CNS cells in for example transcriptional control of development and differentiation, and chromatin methylation. Interestingly, CNS proteins involved in secretion of the neurotransmitters and emitting their responses as well as the regulation of these processes, are also found in islet cells. Moreover, high levels of glutamate, GABA, and glutamine and their respective vesicular and plasma membrane transporters have been shown in the islet cells and there is emerging support for these amino acids and their transporters playing important roles in the maturation and secretion of insulin and glucagon. In this review, we will discuss the feasibility of recent data in the field in relation to the biophysical properties of the transporters (Slc1, Slc17, Slc32, and Slc38) and physiology of hormone secretion in islets of Langerhans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876026PMC
http://dx.doi.org/10.3389/fendo.2013.00199DOI Listing

Publication Analysis

Top Keywords

insulin glucagon
12
glutamate/gaba-glutamine cycle
8
islets langerhans
8
islet cells
8
amino acid
4
transporters
4
acid transporters
4
transporters glutamate/gaba-glutamine
4
cycle impact
4
impact insulin
4

Similar Publications

Purpose: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have risen exponentially in usage and have been shown to exert neuroprotective and anti-inflammatory effects across multiple organ systems. This study investigates whether GLP-1RAs influence the risk for age-related ocular diseases.

Design: Retrospective cohort study.

View Article and Find Full Text PDF

Glucose-Lowering Agents Developed in the Last Two Decades and Their Perioperative Implications.

Pharmaceuticals (Basel)

December 2024

Department of Anesthesiology and Perioperative Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.

The last two decades have provided far more options f both patients and their physicians in the treatment of diabetes mellitus. While dipeptidyl peptidase-4 inhibitors (DPP-4is) and glucagon-like peptide 1 receptor agonists (GLP-1RAs) have been approved for nearly two decades, sodium-glucose cotransporter 2 inhibitors (SGLT-2is) are relatively new. Of interest to perioperative physicians, these drugs present specific perioperative concerns, prompting many societies to issue guidelines.

View Article and Find Full Text PDF

To date, there are limited studies describing the use of glucose-lowering medications (GLMs) in adult kidney transplant recipients (KTRs), and the uptake of sodium glucose cotransporter-2 inhibitors (SGLT2is) and glucagon-like peptide-1 receptor agonists (GLP1RAs). Thus, we aimed to evaluate the use of GLMs, including SGLT2i and GLP1RA, among adult KTRs with type 2 diabetes (T2D). This is an ecologic study of adult KTR with T2D.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is related to the autoimmune destruction of β-cells, leading to their almost complete absence in patients with longstanding T1D. However, endogenous insulin secretion persists in such patients as evidenced by the measurement of plasma C-peptide. Recently, a low level of insulin has been found in non-β islet cells of patients with longstanding T1D, indicating that other islet cell types may contribute to persistent insulin secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!