The objective of the present work was to express a truncated form of Pseudomonas putida PutA that shows proline dehydrogenase (ProDH) activity. The putA gene encoding ProDH enzyme was cloned into pET23a vector and expressed in Escherichia coli strain BL-21 (DE3) plysS. The recombinant P. putida enzyme was biochemically characterized and its three dimensional structure was also predicted. ProDH encoding sequence showed an open reading frame of 1,035-bp encoding a 345 amino acid residues polypeptide chain. Purified His-tagged enzyme gave a single band with a molecular mass of 40 kDa on SDS-PAGE. The molecular mass of the isolated enzyme was found to be about 40 kDa by gel filtration. This suggested that the enzyme of interest consists of one subunit. The K m and V max values of recombinant P. putida ProDH were estimated to be 31 mM and 132 μmol/min, respectively. The optimum pH and temperature for the catalytic activity of the enzyme was about pH 8.5 and 30 °C. The modeling analysis of the three dimensional structure elucidated that Ser-165, Lys-195 and Ala-252 were key residues for the ProDH activity. This study provides data on the cloning, sequencing and recombinant expression of PutA ProDH domain from P. putida POS-F84.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689398PMC
http://dx.doi.org/10.1007/s12088-013-0375-2DOI Listing

Publication Analysis

Top Keywords

proline dehydrogenase
8
pseudomonas putida
8
putida pos-f84
8
prodh activity
8
recombinant putida
8
three dimensional
8
dimensional structure
8
molecular mass
8
prodh
6
enzyme
6

Similar Publications

The razor clam , a significant marine bivalve species, inhabits estuaries and encounters salinity stress. Despite its commercial importance, there is limited understanding of its adaptive mechanisms to high salinity. Aldehyde dehydrogenases (ALDHs), which belong to the NAD(P)-dependent superfamily, play a crucial role in stress resilience by participating in catabolic and anabolic pathways, such as carnitine synthesis, glycolysis, and amino acid metabolism.

View Article and Find Full Text PDF

Insectary plants, such as sweet alyssum, coriander, and white mustard, are well known for their traits that attract beneficial insects, allowing them to protect crops from pests. The aim of the study was to analyze the compounds that are important in the antioxidant response, such as malondialdehyde, ascorbic acid, proline, total phenolics, and total flavonoids, as well as the content of elements, including macroelements (K, Mg, Na, Ca, P, and S) and heavy metals (Cd, Cu, Zn, Pb, Ni, Mn, and Fe) in broad bean plants. These plants were grown in field conditions as the main protected plant alongside a mixture of three insectary plants at different proportions of the individual components.

View Article and Find Full Text PDF

Novel and simple spectrophotometric and distance based procedures for thiols (L-cysteine, N-acetylcysteine, and glutathione) determination in biological fluids and pharmaceuticals have been proposed based on their inhibitory action on the oxidation of catechol in the presence of Agaricus bisporus crude extract (ABE). The influence of L-glycine, L-alanine, L-proline, L-methionine, L-cystine, ascorbic acid, uric acid, and bilirubin on the thiol determination has been investigated. Uric acid, bilirubin, L-cystine (oxidized thiol), and L-amino acids do not interfere with the determination.

View Article and Find Full Text PDF

Innovative auxin-micronutrient based nanocomposites (IAA-FeONPs and IAA-MnONPs) shield strawberry plants from lead toxicity.

Plant Physiol Biochem

December 2024

Department of Pomology, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt; Biology Research & Studies Institute, Assiut University, Assiut, 71526, Egypt. Electronic address:

Smart nanohybrid technology with potential advantages to plants has recently been developed formanaging the widespread pollution of heavy metals. Herein, we disclose a novel strategy to combat Pb stress in strawberry (Fragaria spp. cv.

View Article and Find Full Text PDF

High salt concentrations pose a significant challenge to the efficiency of activated sludge (AS) in phenolic wastewater treatment. As a cellular osmoprotectant, proline (Pro) has the capacity to increase the salt tolerance of microbes in AS, hence improving the efficiency of phenolic wastewater degradation. Nevertheless, the precise mechanism behind this enhancement remains ambiguous.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!